Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
super easy!
theo hệ thức lượng và BĐT cô-si:
\(MF+2ME\ge2\sqrt{2MF.ME}=2\sqrt{2MN^2}=2MN\sqrt{2}\)
Vậy GTNN của MF+2ME là \(2MN\sqrt{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}MF=2ME\\MF+2ME=2MN\sqrt{2}\end{cases}}\)
\(\Rightarrow\) \(2MF=2MN\sqrt{2}\)
\(\Leftrightarrow MF=MN\sqrt{2}\)
Ta có \(\sin F=\frac{MN}{MF}=\frac{1}{\sqrt{2}}\) nên \(\widehat{F}=45^0\)
Hay tam giác MNF vuông cân => ... => tam giác MNE vuông cân => ME = NE => E nằm chính giữa cung MN
p/s: làm bài tốt ko bn?
1. Vì BO vuông góc với BA => góc ABO = 90 độ
Vi CO vuông góc với CA => góc ACO = 90 độ
Xét tứ giác ABOC có : Góc ABC = 90 độ, Góc ACO = 90 độ
mà 2 góc trên đối nhau và có tổng = 180 độ
=> tứ giác ABOC là tứ giác nội tiếp đường tròn.
Nối A với O, ta được tam giác ABO vuông tại B.
Vẽ trung tuyến BI của tam giác ABO => IO = IA = IB
=> I là tâm đường tròn ngoại tiếp tứ giác ABOC.
2. Câu này câu hỏi là gì vậy?
3,
a) OBNC có NCO=OBN=90 nên OBNC là tứ giác nội tiếp
b) Xét tam giác ADC có AB,DC là các đường cao
mà AB cắt DC tại O
suy ra O là trực tâm của tam giác ADC
nên NO vuông góc với AD
c)
CONB là tứ giác nôi tiếp nên COA=CNB
Xét tam giác ACO và tam giác DCN
COA=CNB(cmt)
ACO=NCD=90
nên tam giác ACO đồng dạng với tam giác DNC
nên CA.CN=CO.CD
Còn câu d mk chịu