Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
\(-\frac{16}{17}< -\frac{14}{17}< -\frac{12}{17}< -\frac{11}{17}< -\frac{9}{17}< -\frac{3}{17}< -\frac{1}{17}\)
b
\(-\frac{5}{2}< -\frac{5}{3}< -\frac{5}{4}< -\frac{5}{7}< -\frac{5}{8}< -\frac{5}{9}< -\frac{5}{11}\)
P/S:Lẽ ra ko lm bài này nhưng thấy chứ đang vội thì lm nốt:((
a) Vì -16 < -14 < -12 < -11 < -9 < -3 < -1
=> \(\frac{-16}{17}\), \(\frac{-14}{17}\), \(\frac{-12}{17}\), \(\frac{-11}{17}\), \(\frac{-9}{17}\), \(\frac{-3}{17}\), \(\frac{-1}{17}\)
b) Vì 2 < 3 < 4 < 7 < 8 < 9 < 11
mà theo lí thuyết ta có : phân số nào có mẫu lớn hơn thì phân số đó bé hơn và ngược lại
=> \(\frac{-5}{11}\), \(\frac{-5}{9}\), \(\frac{-5}{8}\), \(\frac{-5}{7}\), \(\frac{-5}{4}\), \(\frac{-5}{3}\), \(\frac{-5}{2}\)
~ Học tốt ~
a ) \(-\frac{6}{7}< \frac{3}{7}< \frac{18}{7}\)
b ) \(\frac{17}{35}>\frac{17}{-35}\)
c ) \(\frac{17}{35}>\frac{17}{53}\)
d ) \(\frac{12}{7}< \frac{17}{5}\)
Ta có: x = \(\frac{7^{16}-3}{7^{16}+1}=\frac{7^{16}+1-4}{7^{16}+1}=1-\frac{4}{7^{16}+1}\)
y = \(\frac{7^{17}-3}{7^{17}+1}=\frac{7^{17}+1-4}{7^{17}+1}=1-\frac{4}{7^{17}+1}\)
Do \(7^{16}+1< 7^{17}+1\) => \(\frac{4}{7^{16}+1}>\frac{4}{7^{17}+1}\) => \(-\frac{4}{7^{16}+1}< -\frac{4}{7^{17}+1}\)
=> \(1-\frac{4}{7^{16}+1}< 1-\frac{4}{7^{17}+1}\) => x < y
Trả lời:
\(x=\frac{7^{16}-3}{7^{16}+1}=\frac{7^{16}+1-4}{7^{16}+1}=\frac{7^{16}+1}{7^{16}+1}-\frac{4}{7^{16}+1}=1-\frac{4}{7^{16}+1}\)
\(y=\frac{7^{17}-3}{7^{17}+1}=\frac{7^{17}+1-4}{7^{17}+1}=\frac{7^{17}+1}{7^{17}+1}-\frac{4}{7^{17}+1}=1-\frac{4}{7^{17}+1}\)
Ta có: \(7^{16}< 7^{17}\)
\(\Leftrightarrow7^{16}+1< 7^{17}+1\)
\(\Leftrightarrow\frac{4}{7^{16}+1}>\frac{4}{7^{17}+1}\)
\(\Leftrightarrow-\frac{4}{7^{16}+1}< -\frac{4}{7^{17}+1}\)
\(\Leftrightarrow1-\frac{4}{7^{16}+1}< 1-\frac{4}{7^{17}+1}\)
\(\Leftrightarrow x< y\)
Vậy x < y
a) \(\frac{-16}{5}< 0< \frac{17}{3}< 2\)
b)\(\frac{-17}{3}< 0< \frac{-30}{-2}< \frac{18}{4}< 5\)
Ta có 13x = \(\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
13y = \(\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
Vì 1317 + 1 > 1316 + 1
=> \(\frac{1}{13^{17}+1}< \frac{1}{13^{16}+1}\)
=> \(\frac{12}{13^{17}+1}< \frac{12}{13^{16}+1}\)
=> \(1+\frac{12}{13^{17}+1}< 1+\frac{12}{13^{16}+1}\)
=> 13x < 13y
=> x < y
Vậy x < y
\(\frac{x}{19}=\frac{19^{17}+1}{19^{17}+19}=1-\frac{18}{19^{17}+19}\)
\(\frac{y}{19}=\frac{19^{16}+1}{19^{16}+19}=1-\frac{18}{19^{16}+19}\)
Nhận thấy 1917 + 19 > 1916 + 19
=> \(\frac{18}{19^{17}+19}< \frac{18}{19^{16}+19}\)
=> \(-\frac{18}{19^{17}+19}>-\frac{18}{19^{16}+19}\)
=> \(1-\frac{18}{19^{17}+19}>1-\frac{18}{19^{16}+19}\)
=> \(\frac{x}{19}>\frac{y}{19}\)
=> x > y
Vậy x > y
Ta có : \(\frac{x}{19}=\frac{19^{17}+1}{19^{17}+19}=1-\frac{18}{19^{17}+19}\)
\(\frac{y}{19}=\frac{19^{16}+1}{19^{16}+19}=1-\frac{18}{19^{16}+19}\)
Vì\(\frac{18}{19^{17}+19}< \frac{18}{19^{16}+19}\)\(\Rightarrow\frac{x}{19}>\frac{y}{19}\)
mà \(x,y>0\)
\(\Rightarrow x>y\)
Bài 1: Đề như đã sửa thì cách giải như sau:
Trong Tam giác ABC
Có AM/AB = AN/AC
Suy ra: MN // BC .
Trong tam giác ABI
có
MK // BI do K thuộc MN
Do đó : MK/BI =AM/AB (1)
Tương tự trong tam giác AIC
Có NK// IC nên NK/IC = AN/AC (2)
Từ (1) (2) có NK/IC = MK/BI do AN/AC = AM/AB
Lại có IC = IB ( t/c trung tuyến)
nên NK = MK (ĐPCM)
Bài 2:
Bài này thứ tự câu hỏi hình như ngược mình giải lần lượt các câu b) d) c) a)
Từ A kẻ đường cao AH ( H thuộc BC).
b) Do tam giác ABC vuông tại A áp dụng pitago ta có
BC=căn(AB mũ 2 + AC mũ 2)= 20cm
d) Có S(ABC)= AB*AC/2= AH*BC/2
Suy ra: AH= AB*AC/ BC = 12*16/20=9.6 cm
c) Ap dung định lý cosin trong tam giác ABD và ADC ta lần lượt có đẳng thức:
BD^2= AB^2 + AD^2 - 2*AB*AD* cos (45)
DC^2= AC^2+ AD^2 - 2*AC*AD*cos(45) (2)
Trừ vế với vế có:
BD^2-DC^2=AB^2-AC^2- 2*AB*AD* cos (45)+2*AC*AD*cos(45)
(BC-DC)^2-DC^2 = -112+4*Căn (2)* AD.
400-40*DC= -112+................
Suy 128- 10*DC= Căn(2) * AD (3)
Thay (3) v ào (2): rính được DC = 80/7 cm;
BD= BC - DC= 60/7 cm;
a) Ta có S(ABD)=AH*BD/2
S(ADC)=AH*DC/2
Suy ra: S(ABD)/S(ACD)= BD/DC = 60/80=3/4;
27/82 và 26/75
Ta có:
27/82 = 2025/6150
26/75 = 2132/6150
Vì 2025/6150<2132/6150 nên 27/82<26/75.
Vậy: 27/82<26/75.
Ta có:
x = \(\frac{17^{16}-3}{17^{16}+1}=\frac{17^{16}+1-4}{17^{16}+1}=\frac{17^{16}+1}{17^{16}+1}-\frac{4}{17^{16}+1}=1-\frac{4}{17^{16}+1}\)
y = \(\frac{17^{17}-3}{17^{17}+1}=\frac{17^{17}+1-4}{17^{17}+1}=\frac{17^{17}+1}{17^{17}+1}-\frac{4}{17^{17}+1}=1-\frac{4}{17^{17}+1}\)
Do \(\frac{4}{17^{16}+1}>\frac{4}{17^{17}+1}\) => \(-\frac{4}{17^{16}+1}< -\frac{4}{17^{17}+1}\) => \(1-\frac{4}{17^{16}+1}< 1-\frac{4}{17^{17}+1}\)
=> x < y