K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2018

lem cai gi moc

23 tháng 1 2018

số 24570 phần 43659 nhiều hơn

14 tháng 6 2020

\(\frac{3}{5}-\frac{-7}{10}+\frac{13}{20}=\frac{12}{20}-\frac{-14}{20}+\frac{13}{20}=\frac{12-\left(-14\right)+13}{20}=\frac{12+14+13}{20}=\frac{39}{20}< \frac{40}{20}=2\)

Vậy \(\frac{3}{5}-\frac{-7}{10}+\frac{13}{20}< 2\)

7 tháng 9 2019

Câu hỏi của Lê Tiến Cường - Toán lớp 6 - Học toán với OnlineMath

\(A=\frac{3}{2}+\frac{7}{6}+\frac{13}{12}+...+\frac{10101}{10100}=\frac{2+1}{2}+\frac{6+1}{6}+\frac{12+1}{12}+...+\frac{10100+1}{10100}\)

\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{6}\right)+\left(1+\frac{1}{12}\right)+....+\left(1+\frac{1}{10100}\right)\)

\(A=\left(1+\frac{1}{1\times2}\right)+\left(1+\frac{1}{2\times3}\right)+\left(1+\frac{1}{3\times4}\right)+...+\left(1+\frac{1}{100\times101}\right)\)

\(A=\left(1+1+1+....+1\right)+\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{100\times101}\right)\)

\(A=100+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{100}-\frac{1}{101}\right)\)

\(A=100+1-\frac{1}{101}=101-\frac{1}{101}< 101=B\)

\(\Rightarrow A< B\)

So easy

9 tháng 8 2016

Ta có:

A = \(\frac{2}{60.63}+\frac{2}{63.66}+...+\frac{2}{117.120}+\frac{2}{2016}\)

\(=2.\left(\frac{1}{60.63}+\frac{1}{63.66}+...+\frac{1}{117.120}\right)+\frac{2}{2016}\)

\(=2.\frac{1}{3}\left(\frac{3}{60.63}+\frac{3}{63.66}+...+\frac{3}{117.120}\right)+\frac{2}{2016}\)

\(=\frac{2}{3}.\left(\frac{1}{60}-\frac{1}{63}+\frac{1}{63}-\frac{1}{66}+...+\frac{1}{117}-\frac{1}{120}\right)+\frac{2}{2016}\)

\(=\frac{2}{3}.\left(\frac{1}{60}-\frac{1}{120}\right)+\frac{2}{2016}\)

\(=\frac{2}{3}.\frac{1}{120}+\frac{2}{2016}\)

\(=\frac{1}{180}+\frac{2}{2016}\)

B = \(\frac{5}{40.44}+\frac{5}{44.48}+...+\frac{5}{76.80}+\frac{5}{2016}\)

\(=\frac{5}{4}.\left(\frac{4}{40.44}+\frac{4}{44.48}+...+\frac{4}{76.80}\right)+\frac{5}{2016}\)

\(=\frac{5}{4}.\left(\frac{1}{40}-\frac{1}{44}+\frac{1}{44}-\frac{1}{48}+...+\frac{1}{76}-\frac{1}{80}\right)+\frac{5}{2016}\)

\(=\frac{5}{4}.\left(\frac{1}{40}-\frac{1}{80}\right)+\frac{5}{2016}\)

\(=\frac{5}{4}.\frac{1}{80}+\frac{5}{2016}\)

\(=\frac{1}{64}+\frac{5}{2016}\)

Vì \(\frac{1}{64}>\frac{1}{180}\) và \(\frac{5}{2016}>\frac{2}{2016}\) nên B > A

Vậy B > A

9 tháng 8 2016

Thanks nhiều nhé

May mà đc cậu giúpNguyễn Huy Tú

29 tháng 4 2020

Ta có: 

\(10A=\frac{10^{2015}+20200}{10^{2015}+2020}=1+\frac{18180}{10^{2015}+2020}\)

\(10B=\frac{10^{2016}+20200}{10^{2016}+2020}=1+\frac{18180}{10^{2016}+2020}\)

Vì \(10^{2016}+2020>2^{2015}+2020\)

=> \(\frac{18180}{10^{2016}+2020}< \frac{18180}{10^{2015}+2020}\)

=> \(1+\frac{18180}{10^{2016}+2020}< 1+\frac{18180}{10^{2015}+2020}\)

=> 10B < 10A

=> B<A

29 tháng 4 2020

\(A=\frac{10^{2014}+2020}{10^{2015}+2020}\)\(< \) \(B=\frac{10^{2015}+2020}{10^{2016}+2020}\)

chúc bạn học tốt

study well

17 tháng 6 2021

D = \(\frac{2^{2004}+1}{2^{2003}+1}\)=\(\frac{2^{2003}+2}{2^{2004}+2}\)

C = \(\frac{2^{2005}+3}{2^{2006}+3}\)\(\frac{2^{2005}+2}{2^{2006}+2}\)

 Vậy C>D

17 tháng 6 2021

mình chuyển 1 hạng tử của 3 từ bên d sang c nên ta được pt như trên

4 tháng 6 2017

Ta thấy \(10^{50}>10^{50}-3\)

\(\Rightarrow B=\frac{10^{50}}{10^{50}-3}>\frac{10^{50}+2}{10^{50}-3+2}=\frac{10^{50}+2}{10^{50}-1}=A\)

Vậy \(A< B\)

Mình chưa học đến đó nên mình tịt

17 tháng 6 2021

Ta thấy:

A = \(\frac{20162017}{20162016}\) và     B =  \(\frac{20152016}{20152015}\)

A  =  \(\frac{20162016}{20162016}\)+  \(\frac{1}{20162016}\)  =   \(1\) +   \(\frac{1}{20162016}\)

B  =   \(\frac{20152015}{20152015}\) +   \(\frac{1}{20152015}\)=   \(1\)  +    \(\frac{1}{20152015}\)

Vì:     \(\frac{1}{20162016}\)   \(< \)       \(\frac{1}{20152015}\)

Nên:    \(A\)    \(< \)    \(B\)

~ HokT~

19 tháng 2 2018

mình nhầm câu b:

Áp dụng....

A=10^11-1/10^12-1<10^11-1+11/10^12-1+11=10^11+10/10^12+10=10.(10^10+1)/10.(10^11+1)

 =10^10+1/10^11+1=B

Vậy A<B(câu này mới đúng còn câu b mình làm chung với câu a là sai)

19 tháng 2 2018

a) Với a<b=>a+n/b+n >a/b

    Với a>b=>a+n/b+n<a/b

    Với a=b=>a+n/b+n=a/b

b) Áp dụng t/c a/b<1=>a/b<a+m/b+m(a,b,m thuộc z,b khác 0)ta có:

A=(10^11)-1/(10^12)-1=(10^11)-1+11/(10^12)-1+11=(10^11)+10/(10^12)+10=10.[(10^10)+1]/10.[(10^11)+1]

    =(10^10)+1/(10^11)+1=B

Vậy A=B