Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1 x=0 y =6 hoặc x=4 y=2 or x=9 y=6
câu 2 cho A > B
\(\Leftrightarrow\dfrac{-9}{10^{2010}}-\dfrac{19}{10^{2011}}>\dfrac{-9}{10^{2011}}-\dfrac{19}{10^{2010}}\)
\(\Leftrightarrow\dfrac{-9}{10^{2010}}+\dfrac{19}{10^{2010}}+\dfrac{9}{10^{2011}}-\dfrac{19}{10^{2011}}>0\)
\(\Leftrightarrow\dfrac{10}{10^{2010}}-\dfrac{10}{10^{2011}}>0\)
\(\Leftrightarrow\dfrac{10}{10^{2010}}-\dfrac{1}{10^{2010}}>0\Leftrightarrow\dfrac{9}{10^{2010}}>0\) ( luôn đúng)
vậy A>B
Bài 2:
Ta có: \(A=\frac{-9}{10^{2010}}+\frac{-19}{10^{2011}}=\frac{-90}{10^{2011}}+\frac{-19}{10^{2011}}=\frac{-109}{10^{2011}}\)
\(B=\frac{-9}{10^{2011}}+\frac{-19}{10^{2010}}=\frac{-9}{10^{2011}}+\frac{-190}{10^{2011}}=\frac{-199}{10^{2011}}\)
Vì \(\frac{-109}{10^{2011}}>\frac{-199}{10^{2011}}\) nên A > B
Vậy A > B
\(\left(2^{19}.27^3+15.4^9.9^4\right):\left(6^9.2^{10}+12^{10}\right)\)
\(=\left[2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4\right]:\left[2^9.3^9.2^{10}+2^{10}.6^{10}\right]\)
\(=\left(2^{19}.3^9+3.5.2^{18}.3^8\right):\left(2^{19}.3^9+2^{10}.2^{10}.3^{10}\right)\)
\(=\left(2^{19}.3^9+5.3^9.2^{18}\right):\left(2^{19}.3^9+2^{20}.3^{10}\right)\)
\(=2^{18}.3^9.\left(1.2+5\right):2^{19}.3^9.\left(1+2.3\right)\)
\(=\left(2^{18}.3^9.7\right):\left(2^{18}.2.3^9.7\right)\)
\(=1:2\)
\(=0.5\)
Ta có:
\(5^{299}< 5^{300}=\left(5^3\right)^{100}=125^{100}\)
\(3^{501}>3^{500}=\left(3^5\right)^{100}=243^{100}\)
Vì \(125^{100}< 243^{100}\) nên \(5^{299}< 125^{100}< 243^{100}< 3^{501}\) hay \(5^{299}< 5^{501}\)
Vậy \(5^{299}< 3^{501}\)
\(A=-\frac{9}{10^{2010}}-\frac{19}{10^{2011}}=-\frac{9}{10^{2010}}-\frac{9}{10^{2011}}-\frac{10}{10^{2011}}=-\frac{9}{10^{2010}}-\frac{9}{10^{2011}}-\frac{1}{10^{2010}}=\frac{8}{10^{2010}}-\frac{9}{10^{2011}}\)\(>B=-\frac{19}{10^{2010}}-\frac{9}{10^{2011}}\)
thanks nha!