Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a:
Ta có:
D là trung điểm của AC
E là trung điểm của AB suy ra DE là đường trung bình của tam giác ABC. Theo tính chất đường trung bình, ta có:
=>DE=\(\dfrac{BC}{2}\)(1); DE//BC(2)Mặt khác K là trung điểm của CG ;H là trung điểm của BG suy ra kh là đường trung bình của tam giác CGB. Theo tính chất đường trung bình ta có: KH//BC(3);KH=\(\dfrac{BC}{2}\)(4)Từ (1)(4) => DE=KHTừ (3)(2) => DE//KHXét tứ giác DEHK có: DE song song với HK và DE bằng HK(cmt)=> tứ giác DEHK là hình bình hành(dhnb)tik nhaab là số cần tìm
b-a=4(1)
ab +ba =132 (2) gọi b+a =c2 ,(2)<=> b+a= c*10+2 <=> (c*10+2)*10+c*10+2=132<=> 110c+22=132 <=> c=1
=> b+a=12=>a=12-b
thế a=12-b vào (1) : b-12+b=4=> b=8 => a=4
A B C N M G E F I
a, xét tứ giác BICG có :
M là trung điểm cuả BC do AM là trung tuyến (gt)
M là trung điểm của GI do I đx G qua M (gt)
=> BICG là hình bình hành (dh)
+ G là trọng tâm của tam giác ABC (gt)
=> GM = AG/2 và GN = BG/2 (đl)
E; F lần lượt là trung điểm của GB; GA (gt) => FG = AG/2 và GE = BG/2 (tc)
=> FG = GM và GN = GE
=> G là trung điểm của FM và EN
=> MNFE là hình bình hành (dh)
b, MNFE là hình bình hành (câu a)
để MNFE là hình chữ nhật
<=> NE = FM
có : NE = 2/3BN và FM = 2/3AM
<=> AM = BN mà AM và BN là trung tuyến của tam giác ABC (Gt)
<=> tam giác ABC cân tại C (đl)
c, khi BICG là hình thoi
=> BG = CG
BG và AG là trung tuyến => CG là trung tuyến
=> tam giác ABC cân tại A