Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy :
\(\frac{1}{10}=\frac{1}{10}\)
\(\frac{1}{14}< \frac{1}{10}\)
\(\frac{1}{18}< \frac{1}{10}\)
........
\(\frac{1}{30}< \frac{1}{10}\)
Cộng vế với vế ta được :
\(\frac{1}{10}+\frac{1}{14}+\frac{1}{18}+...+\frac{1}{30}< \frac{1}{10}+\frac{1}{10}+....+\frac{1}{10}=\frac{5}{10}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{10}+\frac{1}{14}+....+\frac{1}{30}< \frac{1}{2}\)
a ) Ta có
\(\frac{29}{33}>\frac{29}{37}\)( đồng tử khác mẫu )
\(\frac{22}{37}< \frac{29}{37}\)( đồng mẫu khác tử )
=> \(\frac{29}{33}>\frac{29}{37}>\frac{22}{37}\)
b ) \(\frac{163}{257}< \frac{163}{221}\)
\(\frac{162}{257}>\frac{149}{257}\)
\(\Rightarrow\frac{163}{221}>\frac{163}{257}>\frac{149}{257}\)
a) ta có: \(\frac{22}{37}< \frac{29}{37}\)
\(\frac{29}{33}>\frac{29}{37}\)
\(\Rightarrow\frac{22}{37}< \frac{29}{37}< \frac{29}{33}\)
b) ta có: \(\frac{163}{257}>\frac{149}{257}\)
\(\frac{163}{221}>\frac{163}{257}\)
\(\Rightarrow\frac{163}{221}>\frac{163}{257}>\frac{149}{257}\)
mik bt lm câu 1 thôi nha, bn thông cảm:
a = 2007.2009 b = 20082
=(2008 - 1)(2008 + 1)
= 20082 - 1
Ta có, a = 20082 - 1, b = 20082
mà 20082 - 1 < 20082
=> a < b
Bài 1
a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³
2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴
S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)
= 2²⁰²⁴ - 1
b) B = 2²⁰²⁴
B - 1 = 2²⁰²⁴ - 1 = S
B = S + 1
Vậy B > S
a,
\(S=1+2+2^2+...+2^{2023}\)
\(2S=2+2^2+2^3+...+2^{2024}\)
\(\Rightarrow S=2^{2024}-1\)
b.
Do \(2^{2024}-1< 2^{2024}\)
\(\Rightarrow S< B\)
2.
\(H=3+3^2+...+3^{2022}\)
\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)
\(\Rightarrow3H-H=3^{2023}-3\)
\(\Rightarrow2H=3^{2023}-3\)
\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)
\(A=2^0+2^1+2^2+...+2^{20}\)
\(2A=2^1+2^2+2^3+...+2^{21}\)
\(A=2^{21}-1\)
Vậy \(A>B\)