Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này bấm máy tính 570 hoặc 500 là ra đó.
\(\frac{2999997}{6}\)-\(\frac{1999998}{6}\)-\(\frac{999999}{6}\)=0
Sao mấy bạn không tìm 1 hướng giải khác tốt hơn nhỉ ??? Ví dụ như so sánh với số trung gian
:))))))))))))))))))))
Ta thấy :
\(\frac{-13}{38}< \frac{-13}{39}=\frac{-1}{3}=\frac{-29}{87}< \frac{-29}{88}\)
Vậy \(\frac{-13}{38}< \frac{-29}{88}\)
\(\text{Ta có : }\hept{\begin{cases}4>\sqrt{14}\left(\sqrt{16}>\sqrt{14}\right)\\\sqrt{33}>\sqrt{29}\left(\text{luôn đúng}\right)\end{cases}}\)
\(\Rightarrow4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
\(\text{Vậy }4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{10}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{10}};...;\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}};\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
\(\Rightarrow A>\frac{100.1}{\sqrt{100}}=\frac{100}{10}=10\)
Vậy A > 10
ta có \(\frac{1}{\sqrt{1}}>\frac{1}{10}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{10}\)
..............................
\(\frac{1}{\sqrt{99}}>\frac{1}{10}\)
\(\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}\)(có 100 số 1/10)
\(\Rightarrow A>\frac{100}{10}=10\)
Tính từ máy tính casio fx 570 es plus hoặc fx 570 vn plus
Ta thu đc kết quả:
A>B
Gọi x0y và y0z là hai góc kề bù , ot là pg x0y ; 0t' là p/g của y0z
Ta có
y0t = 1/2 x0y ( ot là p/g) (1)
y0t' = 1/2 y0x ( 0t' là p/g) (2)
x0y + y0z = 180 độ ( kề bù)
Từ (1) và (2) => y0t + yot' = 1/2 ( xoy+ y0z) = 1/2 .180 = 9 0 độ
=> t0t' = 90 đọ
hay 0t vuông góc với 0t' => ĐPCM
* Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy.
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy
nên:
{ góc uOz = 1/2 góc xOz
{ góc zOv = 1/2 góc zOy
Suy ra:
{ 2 góc uOz = góc xOz
{ 2 góc zOv = góc zOy
Ta lại có:
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù)
=> 2 góc uOz + 2 góc zOv = 180 độ
=> 2(góc uOz + góc zOv) = 180 độ
=> góc uOz + góc zOv = 90 độ
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau)
=> Tia Ou vuông góc Tia Ov
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.
Bài 1:
Ta có: \(\frac{497}{-499}=-\frac{497}{499}>-\frac{499}{499}=-1\left(1\right)\)
\(-\frac{2345}{2341}< -\frac{2341}{2341}=-1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{497}{-499}>-\frac{2345}{2341}\)
Bài 2:
\(\frac{x+5}{2005}+\frac{x+6}{2004}=\frac{x+7}{2003}+3=0\)
\(\Rightarrow\frac{x+5}{2005}+\frac{x+6}{2004}+\frac{x+7}{2003}+3=0\)
\(\Rightarrow\frac{x+5}{2005}+1+\frac{x+6}{2004}+1+\frac{x+7}{2003}+1=0\)
\(\Rightarrow\frac{x+2010}{2005}+\frac{x+2010}{2004}+\frac{x+2010}{2003}=0\)
\(\Rightarrow\left(x+2010\right)\times\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)=0\)
Vì \(\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)\ne0\Rightarrow x+2010=0\)
\(\Rightarrow x=0-2010=-2010\)
Vậy x = -2010