K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2016

Ta có: 2301 = 2300 . 2 = ( 23) 100 . 2 = 8100 . 2

3201 = 3200 . 3 = (32) 100 . 3 = 9100 . 3

Do 8 < 9 => 8100 < 9100 ; 2 < 3 nên:

=> 8100 . 2 < 9100 . 3

=> 2301 < 3201

Chúc bn hk tốt

Bài làm 

Đặt a - b = x ; b - c = y ; c - a = z 

 => x + y + z = 0

 Ta có :

          \(N=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2.\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2.\left(\frac{x+y+z}{xyz}\right)\)

=>     \(N=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)( Vì x + y + z = 0 )

Vậy ta có đpcm

15 tháng 10 2017

cái này là đố vui hả

18 tháng 6 2020

a] Áp dụng định lí Py - ta - go vào tam giác vuông ABC có ;

       \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\) \(AC^2=BC^2-AB^2\)

\(\Leftrightarrow\) \(AC^2=10^2-6^2\)

\(\Leftrightarrow\) \(AC^2=64\)

\(\Rightarrow\) \(AC=8cm\)

Ta có ; \(AB=6cm\) , \(AC=8cm\) , \(BC=10cm\)

 \(\Rightarrow\) \(BC\)lớn hơn \(AC\) lớn hơn \(AB\)

\(\Leftrightarrow\) góc \(A\) lớn hơn góc \(B\)  lớn hơn góc \(C\) [ theo quan hệ giữa cạnh và góc đối diện ]

10 tháng 11 2016

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

10 tháng 11 2016

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

14 tháng 10 2017

1.

Theo bài ra ta có:

\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\) và x + y - z = 10

Ta có:

\(\frac{x}{8}=\frac{y}{12},\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

Suy ra:

x = 2 . 8 = 16

y = 2 . 12 = 24

z = 2 . 15 = 30

2/

Đặt \(\frac{x}{2}=\frac{y}{5}=k\)

Ta có :x = 2k ; y = 5k

=>x . y = 2k . 5k = 10k2 = 10 => k= 1 => k = ±1

Thay k = 1 ta có : x = 2 . 1 = 2     ;      y = 5 . 1 = 5

Thay k = -1 ta có : x = 2 . (-1) = -2    ;    y = 5 . (-1) = -5

Vậy x = ±2   ;  y = ±5

3/

Giải:

Gọi số học sinh khối 6,7,8,9 lần lượt là a,b,c,d .

Theo bài ra ta có:

\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}\) và b - d = 70

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}=\frac{b-d}{8-6}=\frac{70}{2}=35\)

Suy ra :

a = 35 . 9 = 315

b = 35 . 8 = 280

c = 35 . 7 = 245

d = 35 . 6 = 210

Vậy số học sinh khối 6,7,8,9 lần lượt là 315;280;245;210 .