Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
x + 5/4 = 0 => x = -5/4
x - 19/7 = 0 => x = 19/7
Lập bảng:
P/s: Edogawa Conan: Cái bảng của bạn cho mình cop nha! Thanks! Tí mik trả bạn 1 ! OK?
x | -5/4 19/7 |
x + 5/4 | - 0 + / + |
x - 19/7 | - / - 0 + |
( x + 5/4 ) ( x - 19/7 ) | + 0 - 0 + |
Suy ra -5/4 < x < 19/7
Hay -1,25 < x < 2,(714285)
Mặt khác x thuộc Z nên x = -1, 0, 1, 2
Câu 2:
2xy + 4y = 6
2 (xy + 2y) = 6
=> xy + 2y = 6 / 2 = 3
=> xy + 2y = 3
=> y (x + 2) = 3
Từ đó lập bảng phân tích 3 = 1 . 3 = (-1) . (-3)
Mik khỏi lập bảng!
Từ bảng trên ta có y = {-3; -1; 1; 3}
Câu 3:
x + y = 8, x + z = 10, y + z = 12
=> (x + y) + (x + z) + (y + z) = 8 + 10 + 12 = 30
=> 2(x + y + z) = 30
=> x + y + z = 15
Đến đây thì dễ rồi! ^^
Câu 4:
(x + 3) = +5 Hoặc -5
Nhưng đề hỏi là x^3 > 0 = .....
Nên ta chọn (x + 3) = 5 (tại nếu chọn x + 3 = -5 thì x sẽ < 0 dẫn đến x^3 < 0
Ta có x + 3 = 5
Từ đó có x = 8
Đến đây thì dễ dàng tính ra x^3 bằng mấy và thỏa mãn x > 0....
* ♥ * Xong! * ♫ *
* ♥ * nha! * ♫ *
C1: Lập bảng xét dấu tích:
x + 5/4 = 0 => x = -5/4
x - 19/7 = 0 => x = 19/7
Ta có:
x | -5/4 19/7 |
x + 5/4 | - 0 + / + |
x - 19/7 | - / - 0 + |
( x + 5/4 ) ( x - 19/7 ) | + 0 - 0 + |
Vậy -5/4 < x < 19/7
Bài này lớp 7 giải dài hơn mệt
x,y>0 nên \(x< 7,2\)(7,2<124/17)
thử các số nguyên tố trong khoảng đó (2;3;5;7)
tính y và thử coi y có phải là nguyên tố ko?
tìm đc x=2;y=5
Cách lớp 9: công thức nghiệm tổng quát của pt 17x+18y=124
x=18i+2 (i nguyên)
y=17k+5 (k nguyên)
vì 0<x<7,2 nên x=2 suy ra y=5
phần còn lại là bấm máy
vì x là số nguyên dương và lớn nhất nên x=3
=> \(f\left(3\right)=2.3^2+30=2.9+20=18+30=48\)
ta co:x2+7x+2 chia het cho x+7
x+7 chia het cho x+7
=> x(x+7) chia het cho x+7
hay x2+7x chia het cho x+7
=>(x2+7x+2)-(x2+7x) chia het cho x+7
2 chia het cho x+7
=> x + 7 thuoc uoc cua 2{1;2;-1;-2}
=>x thuoc {-6;-5;-8-9}
Ta có: \(\sqrt{\left(x-\sqrt{2}\right)^2}\ge0;\sqrt{\left(y+\sqrt{2}\right)^2}\ge0;\left|x+y+z\right|\ge0\)
Mà theo đề: \(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
=> \(\sqrt{\left(x-\sqrt{2}\right)^2}=\sqrt{\left(y+\sqrt{2}\right)^2}=\left|x+y+z\right|=0\)
=> \(x-\sqrt{2}=y+\sqrt{2}=x+y+z=0\)
=> \(x=\sqrt{2};y=-\sqrt{2};z=0\).