Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 16.(27+15)+8.(53+25):2
= 4.[(27+15).4] + 4.(53+25)
= 4.168 + 4.312
= 4.(168+312)
= 4.480=1920.
...
Câu b tình bt thui!
b, 53.(51+4)+53.53.(49+96)+53
=53.55+53.53.145+53
=2915+407305+53
=410220+53=410273
Ta có:\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}>4\cdot\dfrac{1}{16}=\dfrac{1}{4}\)
\(\dfrac{1}{17}+\dfrac{1}{18}+\dfrac{1}{19}+\dfrac{1}{20}>4\cdot\dfrac{1}{20}=\dfrac{1}{5}\)
=>\(\dfrac{1}{13}+\dfrac{1}{14}+...+\dfrac{1}{20}>\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{9}{20}\)
=>A>\(\dfrac{1}{12}+\dfrac{9}{20}\)
\(\dfrac{1}{12}>\dfrac{1}{20}\)
=>\(A>\dfrac{1}{20}+\dfrac{9}{20}=\dfrac{1}{2}\)
Vậy...
\(B=\left|157\dfrac{13}{27}-273\dfrac{7}{19}\right|-96\dfrac{14}{27}+15\dfrac{12}{19}\)
\(=273\dfrac{7}{19}-153\dfrac{13}{27}-96\dfrac{14}{27}+15\dfrac{12}{19}\)
\(=\left(273+15+\dfrac{7}{19}+\dfrac{12}{19}\right)-\left(153+96+\dfrac{13}{27}+\dfrac{14}{27}\right)\)
\(=289-250=39\)
Trong dãy số liệu thống kê trên có 20 giá trị ( không phân biệt) nên có tất cả 20 vận động viên tham gia chạy.
Vậy kích thước mẫu là 20
Chọn B.
Ta có:
\(\sum\dfrac{a}{b^3+16}=\sum\left(\dfrac{a}{16}-\dfrac{ab^3}{16\left(b^3+16\right)}\right)\ge\dfrac{a+b+c}{16}-\dfrac{ab^2+bc^2+ca^2}{192}\)
\(=\dfrac{3}{16}-\dfrac{ab^2+bc^2+ca^2}{192}\)
Giờ ta cần chứng minh
\(ab^2+bc^2+ca^2\le4\)
Ta có bổ đề:
\(ab^2+bc^2+ca^2+abc\le\dfrac{4\left(a+b+c\right)^3}{27}\)(cái này tự chứng minh nha)
\(\Rightarrow ab^2+bc^2+ca^2\le4-abc\le4\)
Ta chứng minh
ab2/192 - ab3/(16*(b3 + 16)) >= 0
<=> ab2(b + 4)(b - 2)2/(192b3 + 3072) >= 0
b: \(=\dfrac{-5}{7}\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+\dfrac{13}{4}=\dfrac{-5}{7}+\dfrac{13}{4}=\dfrac{-20+91}{28}=\dfrac{71}{28}\)
c: \(=\dfrac{146}{13}-3-\dfrac{68}{13}=6-3=3\)
d: \(=\dfrac{2}{7}\left(\dfrac{21}{4}-\dfrac{13}{4}\right)=\dfrac{4}{7}\)
Đặt a = 6 + 13 , b = 19 v à c = 3 + 16 thì a, b, c đều dương.
Vì a 2 = 19 + 2 78 , b 2 = 19 , c 2 = 19 + 2 48 nên b 2 < c 2 < a 2 , do đó b < c < a . Đáp án là A.