K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2021

\(x+2y-\sqrt{\left(x^2-4xy+4y^2\right)^2}=x+2y-\left|x-2y\right|=x+2y-x+2y=4y\)

7 tháng 8 2023

a) \(x-2y-\sqrt{x^2-4xy+4y^2}\)

\(=x-2y-\sqrt{\left(x-2y\right)^2}\)

\(=x-2y-\left|x-2y\right|\)

TH1: \(x-2y--\left(x-2y\right)\)

\(=x-2y+x-2y\)

\(=2x-4y\)

TH2: \(x-2y-\left(x-2y\right)\)

\(=x-2y-x+2y\)

\(=0\)

b) \(x^2+\sqrt{x^4-8x^2+16}\)

\(=x^2+\sqrt{\left(x^2-4\right)^2}\)

\(=x^2+\left|x^2-4\right|\)

TH1: 

\(x^2+-\left(x^2-4\right)\)

\(=x^2-x^2+4\)

\(=4\)

TH2: 

\(x^2+\left(x^2-4\right)\)

\(=x^2+x^2-4\)

\(=2x^2-4\)

c) \(2x-1-\sqrt{\dfrac{x^2-10x+25}{x-5}}\) (x>5)

\(=2x-1-\sqrt{\dfrac{\left(x-5\right)^2}{x-5}}\)

\(=2x-1-\sqrt{x-5}\)

d) \(\sqrt{\dfrac{x^4-4x^2+4}{x^2-2}}\) (\(x>\sqrt{2}\))

\(=\sqrt{\dfrac{\left(x^2-2\right)^2}{x^2-2}}\)

\(=\sqrt{x^2-2}\)

e) \(\sqrt{\left(x^2-4\right)^2}+\dfrac{x-4}{\sqrt{x^2-8x+16}}\)

\(=\left|x^2-4\right|+\dfrac{x-4}{\sqrt{\left(x-4\right)^2}}\)

\(=\left|x^2-4\right|+\sqrt{\dfrac{\left(x-4\right)^2}{\left(x-4\right)^2}}\)

\(=\left|x^2-4\right|+1\)

TH1: 

\(x^2-4+1\)

\(=x^2-3\)

TH2:

\(-\left(x^2-4\right)+1\)

\(=-x^2+4+1\)

\(=-x^2+5\)

a: \(A=x-2y-\sqrt{x^2-4xy+4y^2}\)

=x-2y-|x-2y|

Khi x>=2y thì A=x-2y-x+2y=0

Khi x<2y thì A=x-2y+x-2y=2x-4y

b: \(B=x^2+\sqrt{x^4-8x^2+16}\)

\(=x^2+\left|x^2-4\right|\)

TH1: x>=2 hoặc x<=-2

B=x^2+x^2-4=2x^2-4

TH2: -2<=x<=2

B=x^2+4-x^2=4

c: \(C=2x-1-\sqrt{\dfrac{x^2-10x+25}{x-5}}\)

\(=2x-1-\sqrt{\dfrac{\left(x-5\right)^2}{x-5}}=2x-1-\sqrt{x-5}\)

d: \(D=\sqrt{\dfrac{x^4-4x^2+4}{x^2-2}}=\sqrt{\dfrac{\left(x^2-2\right)^2}{x^2-2}}=\sqrt{x^2-2}\)

2 tháng 9 2021

\(x-2y-\sqrt{x^2-4xy+4y^2}\left(1\right)=x-2y-\sqrt{\left(x-2y\right)^2}=x-2y-\left|x-2y\right|\)

TH1: \(x\ge2y\)

\(\left(1\right)=x-2y-x+2y=0\)

TH2: \(x< 2y\)

\(\left(1\right)=x-2y+x-2y=2x-4y\)

2 tháng 9 2021

= x - 2y - \(\sqrt{\left(x-2y\right)^2}\)

= x - 2y - /x-2y/

= x - 2y - x + 2y

= 0

AH
Akai Haruma
Giáo viên
30 tháng 11 2018

Lời giải:

Sửa đề: Rút gọn \(x+2y-\sqrt{x^2-4xy+4y^2}\) \((x\geq 2y)\)

----------------

Ta có:

\(x+2y-\sqrt{x^2-4xy+4y^2}=x+2y-\sqrt{x^2-2.x.2y+(2y)^2}\)

\(=x+2y-\sqrt{(x-2y)^2}\)

\(=x+2y-|x-2y|=x+2y-(x-2y)=4y\)

(do \(x\geq 2y\Rightarrow |x-2y|=x-2y\) )

28 tháng 6 2017

đề rút gọn \(A=x+2y-\sqrt{x^2-4xy+4y^2}\) biết \(x\ge2y\)

\(A=x+2y-\sqrt{x^2-4xy+4y^2}\)

\(A=x+2y-\sqrt{\left(x-2y\right)^2}\)

\(A=x+2y-x+2y=4y\) (do \(x\ge2y\))

22 tháng 7 2017

1,Sửa lại điều kiện,mình nghĩ là: \(x \geq 12\)(chắc bạn ghi nhầm)

\(x \geq 12\) \(\Rightarrow\) \(x-12 \geq 0\) \(\Rightarrow\) \(\sqrt{\left(x-12\right)^2}=x-12\)

Ta có \(4x+\sqrt{\left(x-12\right)^2}\) = \(4x+x-12\) = 5x-12

2, Dư bình phương ở phần căn

\(x \geq 2y\) \(\Rightarrow\) \(x-2y \geq 0\)

Ta có : \(x+2y-\sqrt{\left(x^2-4xy+4y^2\right)}=x+2y-\sqrt{\left(x-2y\right)^2}=x+2y-\left(x-2y\right)=x+2y-x+2y=4y\)

22 tháng 7 2017

à cám ơn bạn nha!!!

AH
Akai Haruma
Giáo viên
28 tháng 10 2023

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé. Viết thế này khó đọc quá.

28 tháng 10 2023

\(x+2y-\sqrt{x^2-4xy+4y^2}\)(sửa đề)

\(=x+2y-\sqrt{\left(x-2y\right)^2}\)

\(=x+2y-\left|x-2y\right|\)

\(=x+2y-\left(x-2y\right)\left(vì.x\ge2y\right)\)

\(=x+2y-x+2y\)

\(=4y\)

28 tháng 10 2023

\(x+2y-\sqrt{x^2-4xy+4y^2}^2\)

\(=x+2y-\sqrt{\left(x-2y\right)^2}^2\)

\(=x+2y-\left(x-2y\right)^2\)

\(=x+2y-x^2+4xy-4y^2\)

19 tháng 10 2020

Ta có: \(x^4+y^4+\frac{x^4y^4}{\left(x^2+y^2\right)^2}\)

\(=\left(x^4+2x^2y^2+y^4\right)-2x^2y^2+\frac{x^4y^4}{\left(x^2+y^2\right)}\)

\(=\left(x^2+y^2\right)^2-2x^2y^2+\left(\frac{x^2y^2}{x^2+y^2}\right)^2\)

\(=\left(x^2+y^2-\frac{x^2y^2}{x^2+y^2}\right)^2\)

Thay vào ta tính được:

\(P=\sqrt{\frac{x^2y^2}{x^2+y^2}+\frac{x^2y^2}{\left(x+y\right)^2}+\sqrt{\left(x^2+y^2-\frac{x^2y^2}{x^2+y^2}\right)^2}}\)

Mà \(x^2+y^2-\frac{x^2y^2}{x^2+y^2}=\frac{\left(x^2+y^2\right)^2-x^2y^2}{x^2+y^2}=\frac{x^4+x^2y^2+y^4}{x^2+y^2}>0\left(\forall x,y\right)\)

Khi đó:

\(P=\sqrt{\frac{x^2y^2}{x^2+y^2}+\frac{x^2y^2}{\left(x+y\right)^2}+x^2+y^2-\frac{x^2y^2}{x^2+y^2}}\)

\(P=\sqrt{x^2+y^2+\frac{x^2y^2}{\left(x+y\right)^2}}\)

\(P=\sqrt{\left(x^2+2xy+y^2\right)-2xy+\frac{x^2y^2}{\left(x+y\right)^2}}\)

\(P=\sqrt{\left(x+y\right)^2-2xy+\left(\frac{xy}{x+y}\right)^2}\)

\(P=\sqrt{\left(x+y-\frac{xy}{x+y}\right)^2}\)

\(P=\left|x+y-\frac{xy}{x+y}\right|=\left|\frac{x^2+xy+y^2}{x+y}\right|=\frac{x^2+xy+y^2}{x+y}\)

Vậy \(P=\frac{x^2+xy+y^2}{x+y}\)