K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2015

Điều kiện xác định biểu thức \(1\ge x\ge-1.\)

Ta có \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(1+x+1-x+\sqrt{1-x^2}\right)\)

\(=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)\)

Do vậy mà \(P=\sqrt{1+\sqrt{1-x^2}}\cdot\left(\sqrt{1+x}-\sqrt{1-x}\right).\)

b.  Theo giả thiết \(P^2=2556881590=\left(1+\sqrt{1-x^2}\right)\left(2+\sqrt{1-x^2}\right)=t\left(t+1\right)\to\) nghiệm theo t rất lẻ, suy ra x^2 rất lẻ, đề nghị xem lại giả thiết 

28 tháng 6 2017

ĐKXĐ;\(x\ge0\)và \(x\ne1\)

P=\(\left[\frac{x+2}{\left(\sqrt{x}\right)^3-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\right].\frac{2}{\sqrt{x}-1}\)

=\(\frac{x+2+\sqrt{x}.\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}.\frac{2}{\sqrt{x}-1}\)

=\(\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2}{\sqrt{x}-1}\)=\(\frac{2}{x+\sqrt{x}+1}\)

Ta có \(P^2=\frac{4}{\left(x+\sqrt{x}+1\right)^2}\);\(2P=\frac{4}{x+\sqrt{x}+1}\)

Với \(x\ge0\)và \(x\ne1\)thì \(x+\sqrt{x}+1\le\left(x+\sqrt{x}+1\right)^2\)

\(\Rightarrow\frac{4}{x+\sqrt{x}+1}\ge\frac{4}{\left(x+\sqrt{x}+1\right)^2}\)

Vậy \(P^2\le2P\)

28 tháng 6 2017

Mình cảm ơn bạn có thể giải hộ mình bài này được ko 

        Cho phương trình \(x^2-\left[2m+1\right]x+m^2+m-6=0\)

             Tìm m để phương trình có 2 nghiệm x1,x2 thỏa mãn trị tuyệt đối của \(x^3_1-x^3_2=35\)

31 tháng 7 2019

\(A=\left(\frac{a+\sqrt{a}}{\sqrt{a}+1}+1\right).\)\(\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}-1\right)\)

\(=\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right)\)\(\left(\frac{-\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-1\right)\)

\(=\left(\sqrt{a}+1\right)\left(-\sqrt{a}-1\right)\)

\(=-\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)=-\left(\sqrt{a}+1\right)^2\)

\(b,A=-a^2\Rightarrow-\left(\sqrt{a}+1\right)^2=a^2\)

\(\Leftrightarrow a=\sqrt{a}+1\Rightarrow a-\sqrt{a}-1=0\)

\(\Rightarrow4a-4\sqrt{a}-4=0\)

\(\Rightarrow4a-4\sqrt{a}+1-5=0\)

\(\Rightarrow\left(2\sqrt{a}-1\right)^2-\sqrt{5}^2=0\)

\(\Rightarrow\left(2\sqrt{a}-1+\sqrt{5}\right)\left(2\sqrt{a}-1-\sqrt{5}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2\sqrt{a}=1-\sqrt{5}\\2\sqrt{a}=1+\sqrt{5}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\sqrt{a}=\frac{1-\sqrt{5}}{2}\\\sqrt{a}=\frac{1+\sqrt{5}}{2}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}a=\frac{\left(1-\sqrt{5}\right)^2}{4}\left(tm\right)\\a=\frac{\left(1+\sqrt{5}\right)^2}{4}\left(tm\right)\end{cases}}\)

9 tháng 8 2017

1)   \(\sqrt{\left(1-\sqrt{2}\right)^2}\)\(+\sqrt{\left(\sqrt{2}+3\right)^2}\)

\(=1-\sqrt{2}+\sqrt{2}+3\)

\(=4\)

2) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}-2+\sqrt{3}-1\)

\(=2\sqrt{3}-3\)

27 tháng 8 2018

a)  ĐK:  \(0< a< 1\)

\(Q=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\sqrt{a^2-2a+1}\)

\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}}{a}-\frac{1}{a}\right).\sqrt{\left(1-a\right)^2}\)

\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\right).\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)

\(=\frac{\left(\sqrt{1+a}+\sqrt{1-a}\right)^2}{\left(\sqrt{1+a}-\sqrt{1-a}\right)\left(\sqrt{1+a}+\sqrt{1-a}\right)}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)

\(=\frac{2+2\sqrt{1-a^2}}{2a}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)

\(=\frac{\sqrt{1-a^2}+1}{a}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)

\(=\frac{-a^2\left(1-a\right)}{a^2}=a-1\)

27 tháng 8 2018

\(Q=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\sqrt{a^2-2a+1}\)

\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}}{a}-\frac{1}{a}\right).\sqrt{\left(1-a\right)^2}\)

\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\right).\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)

\(=\frac{\sqrt{1+a}+\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)

\(=\frac{2+2\sqrt{1-a^2}}{2a}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)

\(=\frac{\sqrt{1-a^2}+1}{a}.\frac{\sqrt{1-a^2}-1}{a}.\left(1-a\right)\)

\(=\frac{-a^2\left(1-a\right)}{a^2}=a-1\)

b)  Xét:  \(Q^3-Q=\left(a-1\right)^3-\left(a-1\right)=\left(a-1\right)^2\left(a-1-1\right)=\left(a-1\right)^2\left(a-2\right)\)

Do  \(a< 1\)=>  \(a-2< 0\) và   \(a-1< 0\) 

nên \(\left(a-1\right)^2\left(a-2\right)< 0\)

=>  \(Q^3-Q< 0\)

<=> \(Q^3< Q\)

7 tháng 12 2016

mi tích tau tau tích mi xong tau trả lời nka

 việt nam nói là làm