K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4

\(E=\left(2-x\right)\left(1+2x\right)+\left(1+x\right)-\left(x^4+x^3-5x^2-5\right)\)

\(=2+4x-x-2x^2+1+x-x^4-x^3+5x^2+5\)

\(=-x^4-x^3+\left(-2x^2+5x^2\right)+\left(4x-x+x\right)+\left(2+1+5\right)\)

\(=-x^4-x^3+3x+4x+8\)

--------

\(G=\left(x^2-7\right)\left(x+2\right)-\left(2x-1\right)\left(x-14\right)+x\left(x^2-2x-22\right)+35\)

\(=x^3+2x^2-7x-14-2x^2+28x+x-14+x^2-2x^2-22x+35\)

\(=x^3+\left(2x^2-2x^2+x^2-2x^2\right)+\left(-7x+28x+x-22x\right)+\left(-14-14+35\right)\)

\(=x^3-x^2+7\)

--------

\(D=\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(x+5\right)-6\left(3x-2\right)\)

\(=6x^2+21x-2x-7-x^2-5x-x-5-18x+12\)

\(=\left(6x^2-x^2\right)+\left(21x-2x-5x-x-18x\right)+\left(-7-5+12\right)\)

\(=5x^2-5x\)

\(E=\left(2-x\right)\left(1+2x\right)+\left(1+x\right)-\left(x^4+x^3-5x^2-5\right)\)

\(=2+4x-x-2x^2+1+x-x^4-x^3+5x^2+5\)

\(=-x^4-x^3+3x^2+4x+8\)

\(G=\left(x^2-7\right)\left(x+2\right)-\left(2x-1\right)\left(x-14\right)+x\left(x^2-2x-22\right)+35\)

\(=x^3+2x^2-7x-14-\left(2x^2-28x-x+14\right)+x^3-2x^2-22x+35\)

\(=2x^3-29x+21-2x^2+29x-14\)

\(=2x^3-2x^2+7\)

\(D=\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(x+5\right)-6\left(3x-2\right)\)

\(=6x^2+21x-2x-7-\left(x^2+6x+5\right)-18x+12\)

\(=6x^2+x+12-x^2-6x-5=5x^2-5x+7\)

1 tháng 7 2019

1) 30x-30x^2-31

2)6x^4-2x^3-15x^2+23x-6

18 tháng 5 2017

đơn thức nào đồng dạng thì đem cộng với nhau

a) \(x^5-3x^2+x^4-\dfrac{1}{2}x-x^5+5x^4+x^2-1\)

\(=6x^4-2x^2-\dfrac{1}{2}x-1\)

b) \(x-x^9+x^2-5x^3+x^6-x+3x^9+2x^6-x^3+7\)

\(=2x^9+3x^6-6x^3+x^2+7\)

19 tháng 5 2017

Hỏi đáp Toán

6 tháng 4 2017

Đáp án đúng phải là

\(h\left(x\right)=2x^5+5x^4+x^3-x^2-3x+6\)

3 tháng 4 2018

Căng, sự thật là nó rất căng

Nhg dù sao thì.....

1) \(A\left(x\right)=\left(x-4\right)^2-\left(2x+1\right)^2\)

Xét \(A\left(x\right)=0\)

\(\Rightarrow\left(x-4\right)^2-\left(2x+1\right)^2=0\)

\(\Rightarrow x^2-8x+16-4x^2-4x-1=0\)

\(\Rightarrow-3x^2-12x+15=0\)

\(\Rightarrow-3x^2+3x-15x+15=0\)

\(\Rightarrow-3x\left(x-1\right)-15\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(-3x-15\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\-3x-15=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)

2)(Sửa đề nha, sai cmnr) \(B\left(x\right)=x^3+x^2-4x-4\)

Xét \(B\left(x\right)=0\)

\(\Rightarrow x^3+x^2-4x-4=0\)

\(\Rightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)

\(\Rightarrow\left(x^2-4\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\pm2\\x=-1\end{matrix}\right.\)

Đó là những j mình biết khocroikhocroi

5 tháng 2 2018

1, \(\left(x-4\right)^2-\left(2x+1\right)^2=\left(x-4-2x-1\right)\left(x-4+2x+1\right)=-3\left(x+5\right)\left(x-1\right).\)

\(\orbr{\begin{cases}x+5=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=1\end{cases}}}\)(mấy cái này áp dụng hàng đẳng thức lớp 8 mới hok)

2,\(x^3+x^2-4x-4=\left(x-2\right)\left(x^2+3x+2\right)=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)

\(\orbr{\begin{cases}x=\mp2\\\end{cases}}x=-1\)

tương tụ lm tiếp nhe buồn ngủ quá rồi !

24 tháng 7 2019

Tên chữ Cam là sao

24 tháng 7 2019

Bài 1:

a) -6x + 3(7 + 2x)

= -6x + 21 + 6x

= (-6x + 6x) + 21

= 21

b) 15y - 5(6x + 3y)

= 15y - 30 - 15y

= (15y - 15y) - 30

= -30

c) x(2x + 1) - x2(x + 2) + (x3 - x + 3)

= 2x2 + x - x3 - 2x2 + x3 - x + 3

= (2x2 - 2x2) + (x - x) + (-x3 + x3) + 3

= 3

d) x(5x - 4)3x2(x - 1) ??? :V

Bài 2:

a) 3x + 2(5 - x) = 0

<=> 3x + 10 - 2x = 0

<=> x + 10 = 0

<=> x = -10

=> x = -10

b) 3x2 - 3x(-2 + x) = 36

<=> 3x2 + 2x - 3x2 = 36

<=> 6x = 36

<=> x = 6

=> x = 5

c) 5x(12x + 7) - 3x(20x - 5) = -100

<=> 60x2 + 35x - 60x2 + 15x = -100

<=> 50x = -100

<=> x = -2

=> x = -2

5 tháng 3 2019

1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2

xét x=1 có f(x) =-3.14 +5.13 +2.12-7.1+7

=-3.1+5.1+2.1-7+7

=-3+5+2-7+7

=4

xét x=0 có f(x) =-3.04 +5.03 +2.02-7.0+7

=0+0+0-0+7=7

xét x=2 có f(x) =-3.24 +5.23 +2.22-7.2+7

=-3.16+5.8+2.4-14+7

=48+40+8-14+7

=89

2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2

xét x=-1 có: g(x)=(-1)4-5.(-1)3+7.(-1)2+15.(-1)+2

=1-5.(-1)+7.1-15+2

=1-(-5)+7-15+2

=1+5+7-15+2=0

xét x=0 có: g(x)=04-5.03+7.02+15.0+2

=0-0+0+0+2+2=2

xét x=1 có: g(x)=14-5.13+7.12+15.1+2

=1-5.1+7.1-15+2

=1-5+7-15+2

=1-5+7-15+2=-10

xét x=2 có: g(x)=24-5.23+7.22+15.2+2

=32-5.8+7.4-30+2

=32-40+28-30+2

=-8

3. h(x) = -x4 + 3x3 + 2x2 - 5x + 1 tại x = -2; -1; 1; 2

xét x=-2có:h(X)=-(-2)4 + 3(-2)3 + 2.(-2)2 - 5.(-2) + 1

=-(32)+3.(-8)+2.4+10+1

=-32-24+8+10+1

=-37

xét x=2có:h(X)=-(2)4 + 3.23 + 2.22 - 5.2 + 1

=-(32)+3.8+2.4+10+1

=-32+24+8+10+1

=11

xét x=1có:h(X)=14 + 3.13 + 2.12 - 5.1 + 1

=1+3.1+2.1+5+1

=1+3+2+5+1

=13

xét x=-1có:h(X)=-14 + 3.(-1)3 + 2.(-1)2 - 5.(-1) + 1

=1+3.(-1)+2.(-1)+5+1

=1-3-2+5+1

=2

4. r(x) = 3x4 + 7x3 + 4x2 - 2x - 2 tại x = -1; 0; 1

xét x=-1có:r(X)= 3(-1)4 + 7(-1)3 + 4(-1)2 - 2(-1)- 2

= 3.1+7.(-1) +4.1+2-2

=3-7+4+2-2

= 0

xét x=0có:r(X)= 3.04 + 7.03 + 4.02 - 2.0- 2

= 0+0+0-0-2

= -2

xét x=1có:r(X)= 3(1)4 + 7(1)3 + 4(1)2 - 2(1)- 2

= 3.1+7.1 +4.1-2-2

=3+7+4-2-2

= 10

25 tháng 6 2019

a ,  x^2 - 2x - (3x^2 - 5x + 4) + (2x^2 - 3x + 7) 

= x^2 - 2x - 3x^2 + 5x - 4 + 2x^2 - 3x + 7 

= (x^2 - 3x^2 + 2x^2) + (-2x + 5x - 3x) + (-4 + 7) 

=  3 

Vậy GTBT ko phụ thuộc vào biến 

b,  (2x^3 - 4x^2 + x - 1) - (5 - x^2 + 2x^3) + 3x^2 - x 

= 2x^3 - 4x^2 + x - 1 - 5 + x^2 - 2x^3 + 3x^2 - x 

= (2x^3 - 2x^3) + (-4x^2 + x^2 + 3x^2 ) + (x - x) + (-1 - 5) 

= -6  

Vậy GTBT ko phụ thuộc vào biến 

a) x2 -2x -( 3x2 -5x +4 )+(2x2 - 3x +7 )

= x2 -2x - 3x2 + 5x - 4 + 2x2 - 3x +7 

= 3

Vậy biểu thức không phụ thuộc vào biến.

b) ( 2x3 -4x2 +x - 1)- (5 - x2 +2x3 ) +3x2 - x 

 =  2x3 -4x2 +x - 1 - 5 + x2 - 2x3  +3x2 - x

= -1 - 5 = -6

Vậy biểu thức không phụ thuộc vào biến x 

2 tháng 4 2019

Câu 1: Tìm nghiệm của các đa thức:

1. P(x) = 2x -3

⇒2x-3=0

↔2x=3

↔x=\(\frac{3}{2}\)

2. Q(x) = −12−12x + 5

↔-12-12x+5=0

↔-12x=0+12-5

↔-12x=7

↔x=\(\frac{7}{-12}\)

3. R(x) = 2323x + 1515

↔2323x+1515=0

↔2323x=-1515

↔x=\(\frac{-1515}{2323}\)

4. A(x) = 1313x + 1

1313x + 1=0

↔1313x=-1

↔x=\(\frac{-1}{1313}\)

5. B(x) = −34−34x + 1313

−34−34x + 1313=0

↔-34x=0+34-1313

↔-34x=-1279

↔x=\(\frac{1279}{34}\)

Câu 2: Chứng minh rằng: đa thức x2 - 6x + 8 có hai nghiệm số là 2 và 4

Giải :cho x2 - 6x + 8 là f(x)

có:f(2)=22 - 6.2 + 8

=4-12+8

=0⇒x=2 là nghiệm của f(x)

có:f(4)=42 - 6.4 + 8

=16-24+8

=0⇒x=4 là nghiệm của f(x)

Câu 3: Tìm nghiệm của các đa thức sau:

1.⇒ (2x - 4) (x + 1)=0

↔2x-4=0⇒2x=4⇒x=2

x+1=0⇒x=-1

-kết luận:x=2 vàx=-1 là nghiệm của A(x)

2. ⇒(-5x + 2) (x-7)=0

↔-5x + 2=0⇒-5x=-2⇒

x-7=0⇒x=7

-kết luận:x=\(\frac{2}{5}\)và x=7 là nghiệm của B(x)

3.⇒ (4x - 1) (2x + 3)=0

⇒4x-1=0↔4x=1⇒x=\(\frac{1}{4}\)

2x+3=0↔2x=3⇒x=\(\frac{3}{2}\)

-kết luận:x=\(\frac{1}{4}\)và x=\(\frac{3}{2}\) là nghiệm của C(x)

4. ⇒ x2- 5x=0

↔x.x-5.x=0

↔x.(x-5)=0

↔x=0

x-5=0⇒x=5

-kết luận:x=0 và x=5 là nghiệm của D(x)

5. ⇒-4x2 + 8x=0

↔-4.x.x+8.x=0

⇒x.(-4x+x)=0

⇒x=0

-4x+x=0⇒-3x=0⇒x=0

-kết luận:x=0 là nghiệm của E(x)

Câu 4: Tính giá trị của:

1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2

-X=1⇒f(x) =4

-X=0⇒f(x) =7

-X=2⇒f(x) =89

2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2

-X=-1⇒G(x) =-14

-X=0⇒G(x) =2

-X=1⇒G(x) =20

-X=2⇒G(x) =43