rút gọn biểu thức M= (-a+b-c) + (a-b) - (a-b+c)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2023

\(M=\left(-a+b-c\right)+\left(a-b\right)-\left(a-b+c\right)\)

\(=-a+b-c+a-b-a+b-c\)

=-a+b-2c

13 tháng 9 2015

a. A=(a-b)+(a+b-c)-(a-b-c)

=a-b+a+b-c-a+b+c

=(a+a-a)+(b+b-b)+(c-c)

=a+b

b. B=(a-b)-(b-c)+(c-a)-(a-b-c)

=a-b-b+c+c-a-a+b+c

=(a-a-a)+(b-b-b)+(c+c+c)

=-a-b+3c

c. C=(-a+b+c)-(a-b+c)-(-a+b-c)

=-a+b+c-a+b-c+a-b+c

=(a-a-a)+(b+b-b)+(c+c-c)

=-a+b+c

13 tháng 9 2015

a) A= ( a-b) + (a+b-c) - ( a-b-c)

      = a-b+a+b-c-a+b+c

      = ( a +a -a) -( b-b-b) - (c-c)

      =  a - (-b) - 0

      = a +b

b) B= ( a -b) - (b-c) + (c-a) -( a-b-c)

      = a - b - b +c +c - a - a +b +c

      = ( a - a -a) - (b+b -b) + ( c+c +c)

      =  - a - b + 3c

c) C= (-a +b+c ) - ( a-b+c) - (-a +b -c)

      =  -a+b+c -a+b-c +a -b+c

      = (-a-a+a) + (b+b-b) + ( c-c+c)

      = -a + b + c

13 tháng 2 2017

Bỏ ngoặc, Ta có: a+b-c+a-b-a+b+c=a+a-a+b-b+b+c-c=a+b

13 tháng 2 2017

P=a+b-c+a-b-a+b+c=a+b+(-c)+a+(-b)+(-a)+b+c=a+b 

thế thôi

20 tháng 10 2016

Ta có: \(A=\left(a+b-c\right)+\left(a-b\right)-\left(a-b\right)-\left(a-b-c\right).\)

\(\Rightarrow A=a+b-c+a+b+a+b+a+b+c\)

\(\Rightarrow A=a+b+a+b+a+b+a+b\)

\(\Rightarrow A=3.\left(a+b\right)\)

20 tháng 10 2016

Rút gọn biểu thức :

 A=(a+b−c)+(a−b)−(a−b)−(a−b−c)

Ta có: A=(a+b−c)+(a−b)−(a−b)−(a−b−c).

⇒A=a+b−c+a+b+a+b+a+b+c

⇒A=a+b+a+b+a+b+a+b

⇒A=3.(a+b)

 nhé !

28 tháng 6 2016

a. \(A=\frac{a^3+a^2+a^2-1}{ \left(a^3+1\right)+\left(2a^2+2a\right)}\)

\(A=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{\left(a+1\right)\left(a^2+a+1\right)+2a\left(a+1\right)}\)

\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1+2a\right)}\)

\(A=\frac{a^2+a-1}{a^2+3a+1}\)

30 tháng 1 2019

\(A=\left(-a-b+c\right)-\left(-a-b-c\right)\)

\(A=-a-b+c+a+b+c\)

\(A=\left(-a+a\right)+\left(b-b\right)+\left(c+c\right)\)

\(\Rightarrow A=2c\)

30 tháng 1 2019

\(A=\left(-a-b+c\right)-\left(-a-b-c\right)\)

\(A=-a-b+c+a+b+c\)

\(A=2c\)

Vậy \(A=2c\)

9 tháng 3 2016

tự làm nhé,dễ lắm

27 tháng 4 2017

bài này khó đấy

1 tháng 2 2017

Viết Năm Phân số thành một phân số

1/2; 1/5; 1/7; 1/4 

bạn nào giải được không ạ ???

bạn nào biết gải giúp mình với 

26 tháng 4 2017

                                                                         Giải                                                                                                                    \(A=\frac{a^3+2a^2-1}{a^3+2a^22a+1}\)                                                                                                                                                           \(A=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}\)                                                                                                      \(A=\frac{a^2\left(a+1\right)\left(a+1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}\)                                                                                                                         \(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2 +a+1\right)}\)                                                                                                                                             \(A=\frac{a^2+a-1}{a^2+a+1}\)                                                                                                                                                                  b, Gọi d là ƯCLN \(\left(a^2+a-1;a^2+a+1\right)\)                                                                                                                   \(\Rightarrow\)\(a^2+a-1⋮d\)                                                                                                                                                                     \(a^2+a+1⋮d\)                                                                                                                                                               \(\Rightarrow\left(a^2+a+1\right)-\left(a^2+a-1\right)⋮d\)                                                                                                                            \(\Rightarrow2⋮d\)                                                                                                                                                                                     \(\Rightarrow d=1\) hoặc d=2                                                                                                                                                              Nhận xét : \(a^2+a-1=a\left(a+1\right)-1\)                                                                                                                         Với số nguyên a ta có :a(a+1) là tích 2 số nguyên liên tiếp \(\Rightarrow a\left(a+1\right)⋮2\)                                                                                \(\Rightarrow a\left(a+1\right)-1\) lẻ \(\Rightarrow a^2+a-1\) lẻ                                                                                                                        \(\Rightarrow\) d không thể bằng 2                                                                                                                                                           Vậy d=1 (đpcm)