K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2020

a) Ta có: \(2\sqrt{3a}-\sqrt{12a^3}-5\cdot\sqrt{\frac{a}{3}}-\frac{1}{4}\cdot\sqrt{27a}\)

\(=2\sqrt{3a}-2a\sqrt{3a}-\frac{5\sqrt{a}}{\sqrt{3}}-\frac{1}{4}\cdot3\sqrt{3a}\)

\(=2\sqrt{3a}-\frac{3}{4}\sqrt{3a}-2a\sqrt{3a}-\frac{5\sqrt{a}}{\sqrt{3}}\)

\(=\frac{5}{4}\sqrt{3a}-2a\sqrt{3a}-5\sqrt{3a}\cdot\frac{1}{3}\)

\(=\frac{5}{4}\sqrt{3a}-\frac{5}{3}\sqrt{3a}-2a\sqrt{3a}\)

\(=\frac{-5}{12}\sqrt{3a}-2a\sqrt{3a}\)

b) Ta có: \(2a\sqrt{b+a}+\left(a+b\right)\cdot\sqrt{\frac{1}{a+b}}-\sqrt{a^3+a^2b}\)

\(=2a\sqrt{a+b}+\sqrt{\left(a+b\right)^2\cdot\frac{1}{a+b}}-a\sqrt{a+b}\)

\(=a\sqrt{a+b}+\sqrt{a+b}\)

\(=\left(a+1\right)\cdot\sqrt{a+b}\)

c) Ta có: \(2\sqrt{a}+5\sqrt{\frac{a}{9}}-a\sqrt{\frac{16}{a}}\cdot\sqrt{a^3}\)

\(=2\sqrt{a}+5\cdot\frac{\sqrt{a}}{3}-4a^2\)

\(=\frac{11}{3}\sqrt{a}-4a^2\)

15 tháng 7 2017

a) \(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2\)

\(=-10\sqrt{2}+5.2-\left(18-30\sqrt{2}+25\right)\)

\(=-10\sqrt{2}+10-18+30\sqrt{2}-25\)

\(=20\sqrt{2}-33\)

b) câu b đề sai

16 tháng 7 2017

câu a, \(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2=-10\sqrt{2}+5.2-\left(8-30\sqrt{2}+25\right)\)

= \(-33+20\sqrt{2}\)

15 tháng 12 2019

\(2\sqrt{3a}-\sqrt{75a}+a\sqrt{\frac{6}{5}.\frac{5}{2a}}-\frac{2}{5}\sqrt{300a^3}\)

\(=2\sqrt{3a}-5\sqrt{3a}+a\sqrt{\frac{3}{2}}-\frac{2}{5}.10.a\sqrt{3a}\)

\(=-3\sqrt{3a}+\sqrt{\frac{3}{a}.a^2-4\sqrt{3a}}\)

\(=-3\sqrt{3a}+\sqrt{3a}-4a\sqrt{3a}\)

\(=-2\sqrt{3a}-4a\sqrt{3a}\)

\(=-2\sqrt{3a}\left(1+2a\right)\)

a: \(=-10\sqrt{2}+10-\left(18-2\cdot3\sqrt{2}\cdot5+25\right)\)

\(=-10\sqrt{2}+19-43+30\sqrt{2}\)

\(=-24+20\sqrt{2}\)

b: \(=2\sqrt{3a}-5\sqrt{3a}+a\cdot\sqrt{\dfrac{27}{4a}}-\dfrac{2}{5}\cdot10a\sqrt{3a}\)

\(=-3\sqrt{3a}-4a\sqrt{3a}+\sqrt{\dfrac{27a}{4}}\)

\(=-3\sqrt{3a}-4a\sqrt{3a}+\dfrac{3}{2}\sqrt{3a}\)

\(=\sqrt{3a}\left(-\dfrac{3}{2}-4a\right)\)

11 tháng 8 2016

\(\sqrt{20}\cdot\sqrt{72}\cdot\sqrt{4,9}=\sqrt{20\cdot72\cdot4,9}=\sqrt{2\cdot10\cdot72\cdot4,9}\\ =\sqrt{144\cdot49}=\sqrt{144}\cdot\sqrt{49}=12\cdot7=84\)

Bài 2:

a) \(\sqrt{3a^3}\cdot\sqrt{12a}=\sqrt{3a^3\cdot12a}=\sqrt{36a^4}=6a^2\)

b) \(\sqrt{2a\cdot32ab^2}=\sqrt{64a^2b^2}=8ab\)

20 tháng 6 2016

\(a,5\sqrt{4a^6}-3a^3=5\left|2a^3\right|-3a^2=-10a^3-3a^3=-13a^3\)(vì a<0)

b)\(\sqrt{9a^4}+3a^2=\left|3a^2\right|+3a^2=3a^2+3a^2=6a^2\)

c)\(\frac{\sqrt{x^2-10x+25}}{x-5}=\frac{\left|x-5\right|}{x-5}\)

Với x-5>0 => x>5 => \(\frac{\sqrt{x^2-10x+25}}{x-5}=1\)

Với x-5<0=>x<5 =>\(\frac{\sqrt{x^2-10x+25}}{x-5}=-1\)

Bài 1:Tính giá trị các biểu thứca)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)a) Rút gọn biểu thức Ab) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)Bài 3 : Cho...
Đọc tiếp

Bài 1:Tính giá trị các biểu thức

a)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)

b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)

c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)

d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        

Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)

a) Rút gọn biểu thức A

b) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)

Bài 3 : Cho biểu thức \(A=\frac{\sqrt{x-1-2\sqrt{x-2}}}{\sqrt{x-2}-1}\)

a) Tìm điều kiện của \(x\)để \(A\)có nghĩa

b) Rút gọn \(A\)

c) Tính \(A\)khi\(x=\sqrt{2013}\)

Bài 4 : Cho biểu thức \(A=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\frac{x-y}{\sqrt{x}-\sqrt{y}}\)

a) Đặt điều kiện để biểu thức \(A\)có nghĩa

b) Rút gọn biểu thức \(A\)

Mấy bạn giúp mình giải với nha, mình đang cần gấp . Mình cảm ơn ạ <3

0
27 tháng 7 2017

a, \(\sqrt{\left(2-\sqrt{5}\right)^2}=\sqrt{5}-2\left(\sqrt{5}>2\right)\)

b, \(\sqrt{\left(3-\sqrt{2}\right)^2}=3-\sqrt{2}\left(3>\sqrt{2}\right)\)

c, Với a < 3

\(\sqrt{\left(a-3\right)^2}+\left(a-9\right)=3-a+a-9=-6\)

d, \(A=\sqrt{\left(2a+5\right)^2}-\left(2a-7\right)\)

\(=\left|2a+5\right|-2a+7\)

+) Xét \(x\ge\dfrac{-5}{2}\) có:

\(A=2a+5-2a+7=12\)

+) Xét \(x< \dfrac{-5}{2}\) có:
\(A=-2a-5-2a+7=-4a+2\)

Vậy...

27 tháng 7 2017

\(a,A=\sqrt{5}-2\\ b,B=3-\sqrt{2}\\ c,C=3-a+a-9\\ =-6\\ d,D=2a+5-2a+7\\ =12\)

11 tháng 7 2016

a) \(\sqrt{\left(1-\sqrt{5}\right)^2}-\sqrt{\left(3-\sqrt{5}\right)^2}=\left(\sqrt{5}-1\right)-\left(3-\sqrt{5}\right)=2\sqrt{5}-4\)

b) \(\frac{a-2\sqrt{a}+1}{\sqrt{a}-1}=\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}-1}=\sqrt{a}-1\) ( \(a\ge0\ne1\))

c) \(\frac{a+\sqrt{a}}{a}=\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}.\sqrt{a}}=\frac{\sqrt{a}+1}{\sqrt{a}}=1+\frac{1}{\sqrt{a}}\)(\(a>0\))

d) \(\frac{3+\sqrt{3}}{1+\sqrt{3}}=\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=\sqrt{3}\)

21 tháng 5 2017

a)-2a-5a=-7a

b)5a+3a=8a

c)

d)-10a^3-3a^3=-13a^3