Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
( x+3)(x2-3x+9)-x(x2-3)=18
=> x3-3x2+9x+3x2-9x+27-x3+3x=18
=> 3x+27=18
=> 3x = 18-27
=> 3x = -9
=> x = -9:3
=> x = -3
Lưu ý: ở chỗ -x(x2-3), dấu trừ không phải của chữ x nên nếu bạn muốn thế số vào thì phải ghi 2 dấu trừ ở chỗ này.
Để \(A\)có nghĩa thì \(x^3-3x-2\ne0\)
\(\Rightarrow\left(x^3-x\right)-\left(2x-2\right)\ne0\)
\(\Rightarrow x\left(x^2-1\right)-2\left(x-1\right)\ne0\)
\(x\left(x+1\right)\left(x-1\right)-2\left(x-1\right)\ne0\)
\(\left(x^2+x-2\right)\left(x-1\right)\ne0\)
\(\Rightarrow\left[x^2-1+x-1\right]\left(x-1\right)\ne0\)
\(\left[\left(x-1\right)\left(x+1\right)+\left(x-1\right)\right]\left(x-1\right)\ne0\)
\(\left(x-1\right)^2\left(x+2\right)\ne0\)
\(\Rightarrow x\ne1;-2\)
Vậy...
\(\Leftrightarrow-2x+1-x-2=8\cdot\left(-4x^2+6x-2x\right)+4\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow-3x-1+32x^2-48x+16x-4x^2+8x-4=0\)
\(\Leftrightarrow28x^2-27x-5=0\)
\(\text{Δ}=\left(-27\right)^2-4\cdot28\cdot\left(-5\right)=1289>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{27-\sqrt{1289}}{56}\\x_2=\dfrac{27+\sqrt{1289}}{56}\end{matrix}\right.\)
- <=> x=0 hoặc x2=1 <=> x=0 hoặc x=1, x= -1
- <=> (x+6)(3x-1+1)=0 <=.>X=6 hoặc X=0
- <=> 4x2+20x+25 = x2+4x+4 <=> 3x2+16x+21 =0 <=> 3x2+9x+7x+21=0 <=> 3x(x+3)+7(x+3)=0 <=> (x+3)(3x+7)=0 <=> X=0 hoặc X=-7/3
- <=> 2X(2X-3) +(2X-3)(2-5X)=0 <=> (2X-3)(2X+2-5X)=0 <=> (2X-3)(2-3X) =0 <=> X=3/2 hoặc X=2/3
- <=> (X-2)(X+1) - (X-2)(X+2) =0 <=> (X-2)(X+1-X-2)=0 <=> (X-2)(-1) =0 <=> X=2
cái bài 2 câu 1 câu 2 và câu 3 sửa cái vế phải lại thành 3/2-1-2x/4 và -15/5 và 2.(x-1)/5
Bài 3a)
\(a+b+c=0\Leftrightarrow a+b=-c\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
mà \(a+b=-c\Rightarrow a^3+b^3+c^3=3abc\)