Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: ĐKXĐ: x>=-1
\(\sqrt{x+1}=x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(x+1\right)^2=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\cdot x=0\\x>=-1\end{matrix}\right.\Leftrightarrow x\in\left\{0;-1\right\}\)
c: \(\sqrt{x-1}=1-x\)
ĐKXĐ: \(\left\{{}\begin{matrix}x-1>=0\\1-x< =0\end{matrix}\right.\Leftrightarrow x=1\)
Do đó: x=1 là nghiệm của phương trình
d: \(2x+3+\dfrac{4}{x-1}=\dfrac{x^2+3}{x-1}\)(ĐKXĐ: x<>1)
\(\Leftrightarrow\left(2x+3\right)\left(x-1\right)+4=x^2+3\)
\(\Leftrightarrow2x^2-2x+3x-3+4-x^2-3=0\)
\(\Leftrightarrow x^2+x-2=0\)
=>(x+2)(x-1)=0
=>x=-2(nhận) hoặc x=1(loại)
a, ĐKXĐ: \(x\ge3\)
\(pt\Leftrightarrow\sqrt{x-3}\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\x-1=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=1\left(l\right)\\x=2\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow x=3\)
b, ĐKXĐ: \(x\ge-1\)
\(pt\Leftrightarrow\sqrt{x+1}\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=0\\x+1=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
c, ĐKXĐ: \(x>2\)
\(pt\Leftrightarrow\frac{x}{\sqrt{x-2}}=\frac{3-x}{\sqrt{x-2}}\)
\(\Leftrightarrow x=3-x\)
\(\Leftrightarrow x=\frac{3}{2}\left(l\right)\)
\(\Rightarrow\) Phương trình vô số nghiệm
d, ĐKXĐ: \(x>-1\)
\(pt\Leftrightarrow\frac{x^2-4}{\sqrt{x+1}}=\frac{x+3+x+1}{\sqrt{x+1}}\)
\(\Leftrightarrow x^2-4=2x+4\)
\(\Leftrightarrow x^2-2x-8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=-2\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow x=4\)
a/ ĐKXĐ: \(0\le x\le1\)
Đặt \(\sqrt{x}+\sqrt{1-x}=a>0\Rightarrow\sqrt{x-x^2}=\frac{a^2-1}{2}\)
Ta được:
\(1+\frac{a^2-1}{3}=a\Leftrightarrow a^2-3a+2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+\sqrt{1-x}=1\\\sqrt{x}+\sqrt{1-x}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x\left(1-x\right)}=0\\2\sqrt{x-x^2}=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\left(1-x\right)=0\\-4x^2+4x-9=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b/ ĐKXĐ: ...
Đặt \(\sqrt{x+5}=a\ge0\Rightarrow a^2-x=5\)
\(x^2+a=a^2-x\)
\(\Leftrightarrow x^2-a^2+a+x=0\)
\(\Leftrightarrow\left(a+x\right)\left(x-a+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-x\\a=x+1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=-x\left(x\le0\right)\\\sqrt{x+5}=x+1\left(x\ge-1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=x^2\left(x\le0\right)\\x+5=x^2+2x+1\left(x\ge-1\right)\end{matrix}\right.\) \(\Leftrightarrow...\)
c/ ĐKXĐ: \(2\le x\le5\)
\(\Leftrightarrow\sqrt{3x-3}=\sqrt{2x-4}+\sqrt{5-x}\)
\(\Leftrightarrow3x-3=x+1+2\sqrt{\left(2x-4\right)\left(5-x\right)}\)
\(\Leftrightarrow x-2=\sqrt{\left(2x-4\right)\left(5-x\right)}\)
\(\Leftrightarrow\left(x-2\right)^2=\left(2x-4\right)\left(5-x\right)\)
\(\Leftrightarrow\left(x-2\right)\left(3x-12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
1) Phương trình đã cho tương đương
\(\Leftrightarrow\left(x-2\right)\left(3\sqrt{x^2+1}-x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\\x=\frac{3}{4}\end{matrix}\right.\)
a/ \(x^2-2x-3=-m\)
Đặt \(f\left(x\right)=x^2-2x-3\)
\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=-4\) ; \(f\left(-1\right)=0\) ; \(f\left(3\right)=0\)
\(\Rightarrow\) Để pt có nghiệm trên khoảng đã cho thì \(-4\le-m\le0\Rightarrow0\le m\le4\)
b/ \(-x^2+2mx-m+1=0\)
\(\Delta'=m^2+m-1\ge0\Rightarrow\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)
Để pt có 2 nghiệm đều âm
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m< 0\\x_1x_2=m-1>0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
Vậy pt luôn có ít nhất 1 nghiệm \(x\ge0\) với \(\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)
c/ \(f\left(x\right)=2x^2-x-1=m\)
Xét hàm \(f\left(x\right)=2x^2-x-1\) trên \(\left[-2;1\right]\)
\(-\frac{b}{2a}=\frac{1}{4}\) ; \(f\left(\frac{1}{4}\right)=-\frac{9}{8}\) ; \(f\left(-2\right)=9\); \(f\left(1\right)=0\)
\(\Rightarrow\) Để pt có 2 nghiệm pb thuộc đoạn đã cho thì \(-\frac{9}{8}< m\le0\)
d/ \(f\left(x\right)=x^2-2x+1=m\)
Xét \(f\left(x\right)\) trên \((0;2]\)
\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=0\) ; \(f\left(0\right)=1\); \(f\left(2\right)=1\)
Để pt có nghiệm duy nhất trên khoảng đã cho \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)
e/ ĐKXĐ: \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge-3\\x\le-4\end{matrix}\right.\\x\ge m\end{matrix}\right.\)
\(x^2+4x+3=x-m\)
\(\Leftrightarrow f\left(x\right)=x^2+3x+3=-m\)
Xét hàm \(f\left(x\right)\)
\(-\frac{b}{2a}=-\frac{3}{2}\) ; \(f\left(-\frac{3}{2}\right)=\frac{3}{4}\); \(f\left(-3\right)=3\); \(f\left(-4\right)=7\)
Để pt có 2 nghiệm thỏa mãn \(x\notin\left(-4;-3\right)\) thì \(\left[{}\begin{matrix}\frac{3}{4}< m\le3\\m\ge7\end{matrix}\right.\) (1)
Mặt khác \(x^2+3x+m+3=0\)
Để pt có 2 nghiệm thỏa mãn \(m\le x_1< x_2\) thì:
\(\left\{{}\begin{matrix}f\left(m\right)\ge0\\x_1+x_2>2m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2+4m+3\ge0\\2m< -3\end{matrix}\right.\) \(\Rightarrow m\le-3\) (2)
Từ (1) và (2) suy ra ko tồn tại m thỏa mãn