Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4:
x+3y=4m+4 và 2x+y=3m+3
=>2x+6y=8m+8 và 2x+y=3m+3
=>5y=5m+5 và x+3y=4m+4
=>y=m+1 và x=4m+4-3m-3=m+1
x+y=4
=>m+1+m+1=4
=>2m+2=4
=>2m=2
=>m=1
3:
x+2y=3m+2 và 2x+y=3m+2
=>2x+4y=6m+4 và 2x+y=3m+2
=>3y=3m+2 và x+2y=3m+2
=>y=m+2/3 và x=3m+2-2m-4/3=m+2/3
\(\sqrt{x^2-2x+4}+\sqrt{x^2+5}=9-2x\left(đk:x\le\dfrac{9}{2}\right)\)
\(\Leftrightarrow x^2-2x+4+x^2+5+2\sqrt{\left(x^2-2x+4\right)\left(x^2+5\right)}=81-36x+4x^2\)
\(\Leftrightarrow2\sqrt{\left(x^2-2x+4\right)\left(x^2+5\right)}=2x^2-34x+72\)
\(\Leftrightarrow4\left(x^2-2x+4\right)\left(x^2+5\right)=4x^4+1156x^2+5184-136x^3+288x^2-4896x\)
\(\Leftrightarrow4x^4-8x^3+36x^2-40x+80=4x^4-136x^3+1444x^2-4896x+5184\)
\(\Leftrightarrow128x^3-1408x^2+4856x-5104=0\)
\(\Leftrightarrow128x^2\left(x-2\right)-1152x\left(x-2\right)+2552\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(128x^2-1152x+2552\right)=0\)
\(\Leftrightarrow x=2\left(tm\right)\)(do \(128x^2-1152x+2552>0\))
bn mũ 3 lên đc bao nhiêu đã
sau đó p/t thành nhân tử đặt nhân tử chung
hok tốt
\(x^2+2y^2+3xy-2x-4y+3=0\)
\(\Leftrightarrow\left(x+2y\right)\left(x+y-2\right)=-3\)
Phần e)
\((x+2)(x+3)(x-7)(x-8)=144\)
\(\Leftrightarrow [(x+2)(x-7)][(x+3)(x-8)]=144\)
\(\Leftrightarrow (x^2-5x-14)(x^2-5x-24)=144\)
Đặt \(x^2-5x-24=a\). PT trở thành:
\((a+10)a=144\)
\(\Leftrightarrow a^2+10a=144\)
\(\Leftrightarrow (a+5)^2=169\)
\(\Leftrightarrow \left[\begin{matrix} a+5=13\rightarrow a=8\\ a+5=-13\rightarrow a=-18\end{matrix}\right.\)
Nếu \(a=8\Leftrightarrow x^2-5x-24=8\Leftrightarrow x^2-5x-32=0\)
\(\Leftrightarrow x=\frac{5\pm 3\sqrt{17}}{2}\)
Nếu \(a=-18\Rightarrow x^2-5x-24=-18\)
\(\Leftrightarrow x^2-5x-6=0\Leftrightarrow (x+1)(x-6)=0\Leftrightarrow x=-1\) hoặc \(x=6\)
Vậy..........
Phần f)
ĐKXĐ: \(x\geq \frac{1}{2}\)
\(2x+8\sqrt{2x-1}=21\)
\(\Leftrightarrow (2x-1)+8\sqrt{2x-1}+16=36\)
\(\Leftrightarrow (\sqrt{2x-1}+4)^2=36\)
\(\Leftrightarrow \left[\begin{matrix} \sqrt{2x-1}+4=6\\ \sqrt{2x-1}+4=-6\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \sqrt{2x-1}=2\\ \sqrt{2x-1}=-10<0(\text{vô lý})\end{matrix}\right.\)
\(\Rightarrow \sqrt{2x-1}=2\Rightarrow 2x-1=4\Rightarrow x=\frac{5}{2}\) (thỏa mãn)
Vậy \(x=\frac{5}{2}\)
Phần i)
\(2x^2-3-4(x-1)=0\)
\(\Leftrightarrow 2x^2-4x+1=0\)
\(\Leftrightarrow 2(x^2-2x+1)-1=0\)
\(\Leftrightarrow 2(x-1)^2=1\Leftrightarrow \left[\begin{matrix} x-1=\frac{1}{\sqrt{2}}\\ x-1=-\frac{1}{\sqrt{2}}\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x=1+\frac{\sqrt{2}}{2}\\ x=1-\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(x\left(2x-3\right)-\left(x-4\right)\left(2x-3\right)=0\)
\(\left(2x-3\right)\left[x-\left(x-4\right)\right]=0\)
\(\left(2x-3\right).4=0\)
\(2x-3=0\)
\(2x=3\)
\(x=\frac{3}{2}\)
Bài làm
~ Do mình k biết cách làm của lớp 9, nên mình làm cách của lớp 8 ~
x( 2x - 3 ) - ( x - 4 )( 2x - 3 ) = 0
<=> ( 2x - 3 )( x - x + 4 ) = 0
<=> ( 2x - 3 ) . 4 = 0
<=> 2x - 3 = 0
<=> x = 3/2
Vậy x = 3/2 là nghiệm phương trình.