Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Sửa đề: \(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
Ta có: \(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{15\sqrt{x}-11-\left(3x+7\sqrt{x}-6\right)-\left(2x+\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-5x+5\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-5\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
Ta có: \(x=3-2\sqrt{2}\)
\(=2-2\cdot\sqrt{2}\cdot1+1\)
\(=\left(\sqrt{2}-1\right)^2\)
Thay \(x=\left(\sqrt{2}-1\right)^2\) vào biểu thức \(A=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\), ta được:
\(A=\frac{-5\cdot\sqrt{\left(\sqrt{2}-1\right)^2}+2}{\sqrt{\left(\sqrt{2}-1\right)^2}+3}\)
\(=\frac{-5\cdot\left(\sqrt{2}-1\right)+2}{\sqrt{2}-1+3}\)
\(=\frac{-5\sqrt{2}+5+2}{\sqrt{2}+2}\)
\(=\frac{-5\sqrt{2}+7}{\sqrt{2}+2}\)
Vậy: Khi \(x=3-2\sqrt{2}\) thì \(A=\frac{-5\sqrt{2}+7}{\sqrt{2}+2}\)
2) Ta có: \(B=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{x-1}\)
\(=\frac{\left(x+2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x\sqrt{x}+x+2\sqrt{x}+2+x+x\sqrt{x}-\sqrt{x}-1-\left(2x+2\sqrt{x}+x\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{2x+2x\sqrt{x}+\sqrt{x}+1-2x-2\sqrt{x}-x\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x\sqrt{x}-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(x-1\right)}{\left(x-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
Ta có: \(x=7-2\sqrt{6}\)
\(=6-2\sqrt{6}\cdot1+1\)
\(=\left(\sqrt{6}-1\right)^2\)
Thay \(x=\left(\sqrt{6}-1\right)^2\) vào biểu thức \(B=\frac{\sqrt{x}}{x+\sqrt{x}+1}\), ta được:
\(B=\frac{\sqrt{\left(\sqrt{6}-1\right)^2}}{\left(\sqrt{6}-1\right)^2+\sqrt{\left(\sqrt{6}-1\right)^2}+1}\)
\(=\frac{\sqrt{6}-1}{7-2\sqrt{6}+\sqrt{6}-1+1}\)
\(=\frac{\sqrt{6}-1}{7-\sqrt{6}}\)
Vậy: Khi \(x=7-2\sqrt{6}\) thì \(B=\frac{\sqrt{6}-1}{7-\sqrt{6}}\)
3) Ta có: \(C=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\frac{x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\frac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)
\(=\frac{\sqrt{x}\left(x-3\sqrt{x}-x-9\right)}{\left(\sqrt{x}+3\right)\left(2\sqrt{x}+4\right)}\)
\(=\frac{\sqrt{x}\left(-3\sqrt{x}-9\right)}{\left(\sqrt{x}+3\right)\cdot2\cdot\left(\sqrt{x}+2\right)}\)
\(=\frac{-3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(2\sqrt{x}+4\right)}\)
\(=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)
Ta có: \(x=7-4\sqrt{3}\)
\(=4-2\cdot2\cdot\sqrt{3}+3\)
\(=\left(2-\sqrt{3}\right)^2\)
Thay \(x=\left(2-\sqrt{3}\right)^2\) vào biểu thức \(C=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\), ta được:
\(C=\frac{-3\cdot\sqrt{\left(2-\sqrt{3}\right)^2}}{2\cdot\sqrt{\left(2-\sqrt{3}\right)^2}+4}\)
\(=\frac{-3\cdot\left(2-\sqrt{3}\right)}{2\cdot\left(2-\sqrt{3}\right)+4}\)
\(=\frac{-6+3\sqrt{3}}{4-2\sqrt{3}+4}\)
\(=\frac{-6+3\sqrt{3}}{8-2\sqrt{3}}\)
Vậy: Khi \(x=7-4\sqrt{3}\) thì \(C=\frac{-6+3\sqrt{3}}{8-2\sqrt{3}}\)
a)\(\frac{3+\sqrt{3}}{1+\sqrt{3}}\)=\(\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{1+\sqrt{3}}\)=\(\sqrt{3}\)
b)\(\frac{2\sqrt{3}-6}{\sqrt{8}-\sqrt{2}}\)
\(\frac{y-2\sqrt{y}}{\sqrt{y}-2}\)=\(\frac{\sqrt{y}\left(\sqrt{y}-2\right)}{\sqrt{y}-2}\)=\(\sqrt{y}\)
d) \(\frac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)=\(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x+3}\right)}{\sqrt{x}-1}\)=\(\sqrt{x}\)+3
e)\(\frac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)=\(\frac{\left(\sqrt{y}-1\right)\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}\)=\(\sqrt{y}\)-1
g)\(\frac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)=\(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}\)=\(\frac{\sqrt{x}+1}{\sqrt{x+3}}\)
chúc bạn học tốt
a) \(\sqrt{x^2-9}-3\sqrt{x-3}=0\\ \Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\\ \Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\\x=6\end{matrix}\right.\)
S = (3;6)
b)\(\sqrt{x^2-4}-2\sqrt{x-2}=0\\ \Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=0\\\sqrt{x+2}=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\x=2\end{matrix}\right.\) S= (2)
c)\(\sqrt{\frac{2x-3}{x-1}}=2\left(đkxđ:x\ne1\right)\Leftrightarrow2\sqrt{x-1}=\sqrt{2x-3}\\ \Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\) S= (1/2)
d) đkxđ : x khác -1
\(\sqrt{\frac{4x+3}{x+1}}=3\Leftrightarrow4x+3=9x+9\Leftrightarrow x=-\frac{6}{5}\) S = (-6/5)
e) đk x >= 3/2
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\) (loại) vậy pt vô nghiệm
f) đk x >= -3/4
\(\frac{\sqrt{4x+3}}{\sqrt{x+1}}=3\Leftrightarrow4x+3=9x+9\Leftrightarrow x=-\frac{6}{5}\) (loại) vậy pt vô nghiệm
\(\left(\frac{3\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right).\frac{\sqrt{x}-3}{2\sqrt{x}-2-\sqrt{x}+3}\)
\(\frac{3x-9\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(\frac{x-6\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)
voi dk \(x\ge0\) ; \(x\ne9\) ;\(x\ne1\)
Ta có: \(x=\sqrt{\frac{\sqrt{3}-x}{\sqrt{3}+x}}\)
\(x^2=\frac{\sqrt{3}-x}{\sqrt{3}+x}\)
\(x^2\left(\sqrt{3}+x\right)=\sqrt{3}-x\)
\(x^3+x^2\sqrt{3}+x-\sqrt{3}=0\)
(Bạn tự nhẩm nghiệm nha, mk quên cách nhậm nghiệm hộ mình)