Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giá trị của biểu thức A tại x=-1 và y=-1 là:
A=5x3y2=5.(-1)3.(-1)2=5.(-1).1=-5
b) Giá trị của biểu thức B tại x=-3 và y=-1 là:
B=5xy4=5.(-3).(-1)4=-15
c) Giá trị của biểu thức C tại x=5 và y=-2 là:
\(C=\frac{4}{5}xy^3=\frac{4}{5}.5.\left(-2\right)^3=4.\left(-8\right)=-32\)
d) Giá trị của biểu thức D tại x=2 và y=\(\frac{1}{3}\) là:
\(D=\frac{3}{4}x^2y^3=\frac{3}{4}.2^2.\left(\frac{1}{3}\right)^3=3.\frac{1}{27}=\frac{1}{9}\)
e) Giá trị của biểu thức E tại x=\(\frac{1}{2}\) và y=5 là:
\(E=\frac{2}{5}x^2y=\frac{2}{5}.\left(\frac{1}{2}\right)^2.5=2.\frac{1}{4}=\frac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}1+\frac{10xy}{\left(x^2+3\right)\left(y^2+1\right)}=0\\\frac{x}{x^2+3}+\frac{y}{y^2+1}=-\frac{3}{20}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{\left(x^2+3\right)}.\frac{y}{\left(y^2+1\right)}=-\frac{1}{10}\\\frac{x}{x^2+3}+\frac{y}{y^2+1}=-\frac{3}{20}\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\frac{x}{x^2+3}=a\\\frac{y}{y^2+1}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}ab=-\frac{1}{10}\\a+b=-\frac{3}{20}\end{matrix}\right.\)
Theo Viet đảo, a và b là nghiệm:
\(t^2+\frac{3}{20}t-\frac{1}{10}=0\Rightarrow\left[{}\begin{matrix}t=\frac{1}{4}\\t=-\frac{2}{5}\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}\frac{x}{x^2+3}=\frac{1}{4}\\\frac{y}{y^2+1}=-\frac{2}{5}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2-4x+3=0\\2y^2+5y+2=0\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}\frac{x}{x^2+3}=-\frac{2}{5}\\\frac{y}{y^2+1}=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x^2+5x+6=0\\y^2-4y+1=0\end{matrix}\right.\)
a)
ĐK: $x-2\geq 0\Leftrightarrow x\geq 2$
TXĐ: $[2;+\infty)$
b)
ĐK: $4x-3\geq 0\Leftrightarrow x\geq \frac{3}{4}$
TXĐ: $[\frac{3}{4};+\infty)$
c) ĐK: \(x+2>0\Leftrightarrow x>-2\)
TXĐ: $(-2;+\infty)$
d)
ĐK: $3-x>0\Leftrightarrow x< 3$
TXĐ: $(-\infty; 3)$
e)
$4-3x>0\Leftrightarrow x< \frac{4}{3}$
TXĐ: $(-\infty; \frac{4}{3})$
f)
ĐK:\(\left\{\begin{matrix} x^2+2\geq 0\\ x\geq 0\end{matrix}\right.\Leftrightarrow x\geq 0\)
TXĐ: $[0;+\infty)$
g) ĐK: \(\left\{\begin{matrix} x^2-2x+1\geq 0\\ 2-3x\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x-1)^2\geq 0\\ x\leq\frac{2}{3}\end{matrix}\right.\Leftrightarrow x\leq \frac{2}{3}\)
TXĐ: $(-\infty; \frac{2}{3}]$
h)
ĐK: \(\left\{\begin{matrix} 2+x\geq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow x\geq 2\)
TXĐ: $[2;+\infty)$
i)
ĐK: \(\left\{\begin{matrix} 2+x\geq 0\\ 2-x\geq 0\end{matrix}\right.\Leftrightarrow 2\geq x\geq -2\)
TXĐ: $[-2;2]$
Bài 1:
\(A=\left(1+sinx\right)\left(1-sinx\right)tan^2x=\left(1-sin^2x\right).\frac{sin^2x}{cos^2x}=cos^2x.\frac{sin^2x}{cos^2x}=cos^2x\)
\(B=cot^2x-sin^2x.cot^2x+1-cot^2x=1-sin^2x.\frac{cos^2x}{sin^2x}=1-cos^2x=sin^2x\)
\(C=tan^2x+2+\frac{1}{tan^2x}-\left(tan^2x-2+\frac{1}{tan^2x}\right)=2+2=4\)
Bài 2:
Đề yêu cầu tính giá trị lượng giác nào bạn? sin?cos?tan?cot?
Không hỏi thì làm sao mà biết cần tính gì