\(\left(x+y\right)^2\ge4xy\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2016

Câu trên trả lời nhiều quá olm . ko cho trả lời nữa tệ thật.

mình ghi chú bên cạnh là đồng nhất hệ số rồi mà. 

bản chất nó là phân tích đa thức thành nhân tử

mình thích nhân phân phối ra hơn là tách ghép

(x^2+ax+b)(x^2+cx+d) =(x^4+cx^3+dx^2)+(ax^3+acx^2+adx)+(bx^2+bcx+bd)=x^4+(c+a)x^3+(ac+b+d)x^2+(ad+bd)x+bd --->nhân phân phối bình thường rồi ghép lại theo số mũ của x

=>x^4+(c+a)x^3+(ac+b+d)x^2+(ad+bd)x+bd=x^4-2x^3-13x^2+14x+48

để hai cái này bằng nhau => các hệ số theo số mũ của x tương ứng phải bằng nhau

=>

c+a=-2

ac+b+d=-13

ad+bd=14

bd=48

 { để giải hệ này  cũng phải đơn giản, nếu để chuẩn thì không đến nỗi đánh đố nhau nên thường  hệ số là số nguyên, qua la so huu ty hồng đến nỗi vô tỷ=>-->

a+c=-2-->a,c=+-1 ;+-2

bd=48=6.8=......=>

sau một vài phép thử tìm ra; các hệ số: a,b,c,d

   

19 tháng 2 2016

\(\left(x+y\right)^2\ge4xy\Leftrightarrow x^2+2xy+y^2\ge4xy\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\left(Đúng\right)\)với mọi số dương x,y

7 tháng 11 2018

\(a)\)\(x+xy+y=-6\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(y+1\right)=-5\)

Lập bảng xét TH ra là xong 

\(b)\) CM : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\)\(\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\)\(x^2+2xy+y^2-4xy\ge0\)

\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)

Xin thêm 1 slot đi hok về làm cho -,- 

7 tháng 11 2018

\(b)\) CM : \(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{1+1}=\frac{1}{2}\left(x+y\right)^2\) ( bđt Cauchy-Schawarz dạng Engel ) 

Ta có : 

\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+2017\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}+2017\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}+2017=\frac{\left(2+\frac{4}{2}\right)^2}{2}+2017=2025\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)

Bài này còn có cách khác là sử dụng tính chất tổng 2 phân số nghịch đảo nhau nhá :)) 

Chúc bạn học tốt ~ 

29 tháng 7 2018

a)  \(\frac{\sqrt{4mn^2}}{\sqrt{20m}}=\sqrt{\frac{4mn^2}{20m}}=\sqrt{\frac{n^2}{5}}=\frac{n}{\sqrt{5}}\)

b)  \(\frac{\sqrt{16a^4b^6}}{\sqrt{12a^6b^6}}=\sqrt{\frac{16a^4b^6}{12a^6b^6}}=\sqrt{\frac{4}{3a^2}}=\frac{2}{\sqrt{3}.\left|a\right|}=-\frac{2}{a\sqrt{3}}\)

d)  \(\frac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}=x+\sqrt{xy}+y\)

e) \(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\frac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)

25 tháng 7 2018

\(VT=\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\)

\(\ge\dfrac{4}{x^2+2xy+y^2}\)

\(=\dfrac{4}{\left(x+y\right)^2}>4\)

25 tháng 7 2018

Cách khác.

Ta có: \(A=\dfrac{1}{x\left(x+y\right)}+\dfrac{1}{y\left(x+y\right)}=\dfrac{1}{x+y}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(=\dfrac{1}{x+y}.\dfrac{x+y}{xy}=\dfrac{1}{xy}\)

Áp dụng BĐT cho các số x,y >0 , ta có:

\(x+y\ge2\sqrt{xy}\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow\dfrac{\left(x+y\right)^2}{4}\ge xy\)

Và x+y \(\le\)1 \(\Rightarrow xy\le\dfrac{1}{4}\) \(\Rightarrow A\ge\dfrac{1}{\dfrac{1}{4}}=4\)

Dấu ''='' xảy ra khi x = y =0,5

16 tháng 7 2018

a, \(\left(\sqrt{3}-\sqrt{2}\right)\cdot\sqrt{5+2\sqrt{6}}=\sqrt{15+2\cdot3\cdot\sqrt{6}}-\sqrt{10+2\cdot2\cdot\sqrt{6}}=\sqrt{9+2\cdot3\cdot\sqrt{6}+6}-\sqrt{6+2\cdot\sqrt{6}\cdot2+4}=\sqrt{\left(3+\sqrt{6}\right)^2}-\sqrt{\left(\sqrt{6}+2\right)^2}=3+\sqrt{6}-\sqrt{6}-2=3-2=1\left(đpcm\right)\)

b, đề không rõ ràng

26 tháng 7 2019

\( a)\sqrt {4{x^2} - 4x + 1} = 3\\ \Leftrightarrow \sqrt {{{\left( {2x - 1} \right)}^2}} = 3\\ \Leftrightarrow \left| {2x - 1} \right| = 3\\ T{H_1}:2x - 1 \ge 0 \Rightarrow x \ge \dfrac{1}{2}\\ 2x - 1 = 3\\ \Leftrightarrow 2x = 3 + 1\\ \Leftrightarrow 2x = 4\\ \Leftrightarrow x = \dfrac{4}{2} = 2\left( {TM} \right)\\ T{H_2}:2x - 1 < 0 \Rightarrow x < \dfrac{1}{2}\\ - \left( {2x - 1} \right) = 3\\ \Leftrightarrow - 2x + 1 = 3\\ \Leftrightarrow - 2x = 3 - 1\\ \Leftrightarrow - 2x = 2\\ \Leftrightarrow x = - \dfrac{2}{2} = - 1\left( {TM} \right) \)

Vậy...

1 a) \(\sqrt{4x^2-4x+1}=3\Leftrightarrow\sqrt{\left(2x-1\right)^2}=3\Leftrightarrow\left|2x-1\right|=3\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

b) Với x > 0 ; y > 0,ta có :

\(\left(\sqrt{x}+\sqrt{y}\right)\left(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\right)=\frac{\left(\sqrt{x}+\sqrt{y}\right)\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)=x-y\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Bài 1:

\(A=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}=\sqrt{2+3-2\sqrt{2.3}}+\sqrt{2+3+2\sqrt{2.3}}\)

\(=\sqrt{(\sqrt{2}-\sqrt{3})^2}+\sqrt{\sqrt{2}+\sqrt{3})^2}\)

\(=|\sqrt{2}-\sqrt{3}|+|\sqrt{2}+\sqrt{3}|=\sqrt{3}-\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{3}\)

\(B=(\sqrt{10}+\sqrt{6})\sqrt{8-2\sqrt{15}}\)

\(=(\sqrt{10}+\sqrt{6}).\sqrt{3+5-2\sqrt{3.5}}\)

\(=(\sqrt{10}+\sqrt{6})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)

\(=\sqrt{2}(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})=\sqrt{2}(5-3)=2\sqrt{2}\)

\(C=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)

\(C^2=8+2\sqrt{(4+\sqrt{7})(4-\sqrt{7})}=8+2\sqrt{4^2-7}=8+2.3=14\)

\(\Rightarrow C=\sqrt{14}\)

\(D=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{2}\sqrt{3-\sqrt{5}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{6-2\sqrt{5}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{5+1-2\sqrt{5.1}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{(\sqrt{5}-1)^2}\)

\(=(3+\sqrt{5})(\sqrt{5}-1)^2=(3+\sqrt{5})(6-2\sqrt{5})=2(3+\sqrt{5})(3-\sqrt{5})=2(3^2-5)=8\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Bài 2:

a) Bạn xem lại đề.

b) \(x-2\sqrt{xy}+y=(\sqrt{x})^2-2\sqrt{x}.\sqrt{y}+(\sqrt{y})^2=(\sqrt{x}-\sqrt{y})^2\)

c)

\(\sqrt{xy}+2\sqrt{x}-3\sqrt{y}-6=(\sqrt{x}.\sqrt{y}+2\sqrt{x})-(3\sqrt{y}+6)\)

\(=\sqrt{x}(\sqrt{y}+2)-3(\sqrt{y}+2)=(\sqrt{x}-3)(\sqrt{y}+2)\)