Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chỉ cần áp dụng một vài BĐT thôi :)
Có: \(x^2+y^2\ge2xy\)
\(\left(x+y\right)^2\ge2\left(x^2+y^2\right)\)
\(\Leftrightarrow\frac{1}{2}\ge x^2+y^2\)
Áp dụng các BĐT trên vào CM Bđt cần Cm:
\(\frac{2}{xy}+\frac{3}{x^2+y^2}\ge\frac{2}{\frac{x^2+y^2}{2}}+\frac{3}{x^2+y^2}=\frac{4}{x^2+y^2}+\frac{3}{x^2+y^2}=\frac{7}{x^2+y^2}\ge\frac{7}{\frac{1}{2}}=14\)
Vậy ... đpcm
Bài 1:
Áp dụng BĐT AM-GM:
\(9=x+y+xy+1=(x+1)(y+1)\leq \left(\frac{x+y+2}{2}\right)^2\)
\(\Rightarrow 4\leq x+y\)
Tiếp tục áp dụng BĐT AM-GM:
\(x^3+4x\geq 4x^2; y^3+4y\geq 4y^2\)
\(\frac{x}{4}+\frac{1}{x}\geq 1; \frac{y}{4}+\frac{1}{y}\geq 1\)
\(\Rightarrow x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 5(x^2+y^2)+\frac{3}{4}(x+y)+2\)
Mà:
\(5(x^2+y^2)\geq 5.\frac{(x+y)^2}{2}\geq 5.\frac{4^2}{2}=40\)
\(\frac{3}{4}(x+y)\geq \frac{3}{4}.4=3\)
\(\Rightarrow A= x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 40+3+2=45\)
Vậy \(A_{\min}=45\Leftrightarrow x=y=2\)
Bài 2:
\(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
\(B-24=\frac{a^2}{a-1}-4+\frac{2b^2}{b-1}-8+\frac{3c^2}{c-1}-12\)
\(=\frac{a^2-4a+4}{a-1}+\frac{2(b^2-4b+4)}{b-1}+\frac{3(c^2-4c+4)}{c-1}\)
\(=\frac{(a-2)^2}{a-1}+\frac{2(b-2)^2}{b-1}+\frac{3(c-2)^2}{c-1}\geq 0, \forall a,b,c>1\)
\(\Rightarrow B\geq 24\)
Vậy \(B_{\min}=24\Leftrightarrow a=b=c=2\)
\(3=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\)
\(\Rightarrow xyz\le1\)
\(\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{z^2}\le\frac{x^2+1+1}{3}+\frac{y^2+1+1}{3}+\frac{z^2+1+1}{3}=3\)
Ta co:
\(A=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}=\frac{x\sqrt[3]{x}}{\sqrt[3]{xyz}}+\frac{y\sqrt[3]{y}}{\sqrt[3]{xyz}}+\frac{z\sqrt[3]{z}}{\sqrt[3]{xyz}}\)
\(\ge x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\)
\(\Rightarrow3A\ge3\left(x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\right)\ge\left(x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\right)\left(\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{z^2}\right)\)
\(\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
\(\Rightarrow A\ge xy+yz+zx\)
Áp dụng BĐT Cauchy - Schwarz, ta có: \(3\left(x^2+y^2+z^2\right)=\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3=x^2+y^2+z^2\)(Do \(x^2+y^2+z^2=3\))
Ta có: \(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{zx}}+\frac{z}{\sqrt[3]{xy}}=\frac{x}{\sqrt[3]{yz.1}}+\frac{y}{\sqrt[3]{zx.1}}+\frac{z}{\sqrt[3]{xy.1}}\)
\(\ge\frac{x}{\frac{y+z+1}{3}}+\frac{y}{\frac{z+x+1}{3}}+\frac{z}{\frac{x+y+1}{3}}\)\(=\frac{3x}{y+z+1}+\frac{3y}{z+x+1}+\frac{3z}{x+y+1}\)
\(=\frac{3x^2}{xy+zx+x}+\frac{3y^2}{yz+xy+y}+\frac{3z^2}{zx+yz+z}\)\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+\left(x+y+z\right)}\)(Theo BĐT Cauchy - Schwarz dạng Engle)
\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+x^2+y^2+z^2}=\frac{3\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=3=x^2+y^2+z^2\)
\(\ge xy+yz+zx\)
Đẳng thức xảy ra khi x = y = z = 1
áp dụng BĐT Bunhiacopxki ta có: \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{\left(a+b\right)}\)
ta có:
\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2xy+2yz+2zx}+\frac{2}{x^2+y^2+z^2}\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}\)
\(=\left(\sqrt{6}+\sqrt{2}\right)^2\ge14\left(đpcm\right)\)
Đặt biểu thức trên là A
\(A=x^2+y^2+\left(\frac{xy-1}{x-y}\right)^2\)
\(=\left(x-y\right)^2+\frac{\left(xy-1\right)^2}{\left(x-y\right)^2}+2xy\ge2\sqrt{\left(x-y\right)^2\frac{\left(xy-1\right)^2}{\left(x-y\right)^2}}+2xy\)
\(=2\sqrt{\left(xy-1\right)^2}+2xy\)
\(=2\left|xy-1\right|+2xy\)
Áp dụng bđt Cô si
- Nếu thấy \(xy\ge1\Rightarrow A\ge2xy-2+2xy=4xy-2\ge2\)
- Nếu \(xy< 1\Rightarrow A>-2xy+2+2xy=2\)
Vậy : \(A\ge2\left(đpcm\right)\)
Ta có:Xét hiệu \(x^2+y^2+\left(\frac{xy-1}{x-y}\right)^2-2=\left(x-y\right)^2+\left(\frac{xy-1}{x-y}\right)^2+2\left(xy-1\right)\ge0\)
\(=\left(x-y+\frac{xy-1}{x-y}\right)^2\ge0\)
\(\Rightarrow x^2+y^2+\left(\frac{xy-1}{x-y}\right)^2\ge2\left(đpcm\right)\)
Cho 2 số thực x,y khác 0 thay đổi và thỏa mãn: $(x+y)xy=x^{2}+y^{2}-xy$ .Tìm GTLN của $A=\frac{1}{x^{3}}+\frac{1}{y^{3}}$ - Bất đẳng thức và cực trị - Diễn đàn Toán học
2. Có : 1/x + 1/y + 1/z = 0
=> 1 + x/y + x/z = 0 => x/y + x/z = -1
Tương tự : y/x + y/z = -1 ; z/x + z/y = -1
=> x/y + x/z + y/x + y/z + z/x + z/y = -3
Lại có : 1/x+1/y+1/z = 0
<=> xy+yz+zx/xyz = 0
<=> xy+yz+zx = 0
Xét : 0 = (xy+yz+zx).(1/x^2+1/y^2+1/z^2)
= xy/z^2+xz/y^2+xy/z^2+x/y+y/x+y/z+z/y+z/x+x/z
= xy/z^2+xz/y^2+xy/z^2-3
=> xy/z^2+xz/y^2+xy/z^2 = 3
=> ĐPCM
Tk mk nha
Áp dụng BĐT Cô si ta có:
\(1=\left(a+b+c\right)^2\ge4a\left(b+c\right)\)
\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\)
Mà \(\left(b+c\right)^2\ge4bc\)
\(\Rightarrow b+c\ge4a.4bc=16abc\)
a/ \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)
Dấu "=" xảy ra khi \(x=y\)
b/Đặt biểu thức vế trái là Q
\(\frac{1}{a+b+1+3}\le\frac{1}{4}\left(\frac{1}{a+b+1}+\frac{1}{3}\right)=\frac{1}{4}\left(\frac{1}{a+b+1}\right)+\frac{1}{12}\)
Thiết lập tương tự và cộng lại:
\(Q\le\frac{1}{4}\left(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\right)+\frac{1}{4}\)
Xét \(P=\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\)
Đặt \(\left(a;b;c\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)
\(\Rightarrow P=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\le\frac{1}{xy\left(x+y\right)+1}+\frac{1}{yz\left(y+z\right)+1}+\frac{1}{zx\left(z+x\right)+1}\)
\(P\le\frac{xyz}{xy\left(x+y\right)+xyz}+\frac{xyz}{yz\left(y+z\right)+xyz}+\frac{xyz}{zx\left(z+x\right)+xyz}\)
\(P\le\frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=1\)
\(\Rightarrow Q\le\frac{1}{4}.1+\frac{1}{4}=\frac{1}{2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(VT=3\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\ge\frac{12}{\left(x+y\right)^2}+\frac{2}{\left(x+y^2\right)}=14\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Chi tiết ik tui chửa hiểu