\(\sqrt{\dfrac{x^2+2x+4}{2x-3}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2016

Ta có : \(\sqrt{x^2+2x+2}=\sqrt{\left(x^2+2x+1\right)+1}=\sqrt{\left(x+1\right)^2+1}\ge1>0\) với mọi \(x\in R\) 

Vậy với mọi \(x\in R\)thì căn thức trên xác định.

24 tháng 6 2019

a) \(\sqrt{x^2-8x+18}=\sqrt{\left(x-4\right)^2+2}\)

Ta có:\(\left(x-4\right)^2\ge0\Rightarrow\left(x-4\right)^2+2\ge0\)

Vậy biểu thức \(\sqrt{x^2-8x+18}\)thỏa mãn với mọi x.

b) Để \(\sqrt{3x-2}+\sqrt{3-2x}\)có nghĩa thì \(\hept{\begin{cases}3x-2>0\\3-2x>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>\frac{2}{3}\\x< \frac{3}{2}\end{cases}}\Leftrightarrow\frac{2}{3}< x< \frac{3}{2}\)

Vậy \(ĐKXĐ:\frac{2}{3}< x< \frac{3}{2}\)

c) Để \(\frac{3x+4}{x-2}\)có nghĩa thì \(x\ne2\)

Để \(\sqrt{\frac{3x+4}{x-2}}\)thì 3x + 4 và x - 2 hoặc cùng dương hoặc cùng âm hoặc 3x + 4 = 0

\(TH1:3x+4=0\Leftrightarrow x=\frac{-4}{3}\)

\(TH2:\hept{\begin{cases}3x+4>0\\x-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{-4}{3}\\x>2\end{cases}}\Leftrightarrow x>2\)

\(TH3:\hept{\begin{cases}3x+4< 0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{-4}{3}\\x< 2\end{cases}}\Leftrightarrow x< \frac{-4}{3}\)

24 tháng 6 2019

Câu b) Để \(\sqrt{3x-2}+\sqrt{3-2x}\)có nghĩa thì \(\hept{\begin{cases}3x-2\ge0\\3-2x\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{2}{3}\\x\le\frac{3}{2}\end{cases}}\)

Vậy \(ĐKXĐ:\frac{2}{3}\le x\le\frac{3}{2}\)

a=, \(\sqrt{x^2-2.4x+16+2}\)\(\sqrt{\left(x-4\right)^2+2}\)\(\ge\)\(\forall\)x

vậy với mọi gtri của x thì căn luôn có nghĩa

b,= 2\(\sqrt{3x-2}\)

để biểu thức có nghĩa thì 3x - 2 \(\ge\)0

                                           x \(\ge\)2/3

c,để biểu thức có nghĩa thì   \(\orbr{\begin{cases}\hept{\begin{cases}3x+4\ge0\\x-2>0\end{cases}}\\\hept{\begin{cases}3x+4\le0\\x-2< 0\end{cases}}\end{cases}}\)

\(\orbr{\begin{cases}\hept{\begin{cases}3x+4\ge0\\x-2>0\end{cases}}\\\hept{\begin{cases}3x+4\le0\\x-2< 0\end{cases}}\end{cases}}\)\(\hept{\begin{cases}3x+4\ge0\\x-2>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge-\frac{4}{3}\\x>2\end{cases}}\)\(\Rightarrow\)x>2    (1)

hoặc   \(\hept{\begin{cases}3x+4\le0\\x-2< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\le-\frac{4}{3}\\x< 2\end{cases}}\)\(\Rightarrow\)\(\le\)-4/3      (2)

vậy với x > 2 hoặc x \(\le\)-4/3 thì căn có nghĩa

#mã mã#

Căn thức có nghĩa \(\Leftrightarrow x^2-3\ge0\Rightarrow\sqrt{3}\le x\le-\sqrt{3}\)

\(\Leftrightarrow x^2-2x-3\ge0\)

\(\Leftrightarrow x\left(x+2\right)\ge0\)

\(\Leftrightarrow x^2+5x+6\ge0\)

3 tháng 7 2017

Bạn tìm điều kiện để cái trong căn lớn hơn bằng 0 la ok luôn mà

12 tháng 7 2021

mình điền sai ở câu a) phải là 4x nhé

12 tháng 7 2021

Mình viết lại câu a) \(\sqrt{2x^2+4x+5}\)

15 tháng 7 2019

Để \(\frac{x}{x-2}+\sqrt{x-2}\) có nghĩa thì điều kiện là:

\(\hept{\begin{cases}x-2\ne0\\x-2\ge0\end{cases}\Leftrightarrow}x-2>0\Leftrightarrow x>2\)

Để \(\frac{x}{x+2}+\sqrt{x-2}\) có nghĩa thì điều kiện là:

\(\hept{\begin{cases}x+2\ne0\\x-2\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne-2\\x\ge2\end{cases}\Leftrightarrow}x\ge2\)

Để \(\frac{x}{x^2-4}+\sqrt{x-2}\) có nghĩa thì điều kiện là:

\(\hept{\begin{cases}x-2\ge0\\x^2-4\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge2\\x\ne\pm2\end{cases}\Leftrightarrow x>2}\)

Để \(\sqrt{\frac{1}{3-2x}}\) có nghĩa thì điều kiện là:

\(\hept{\begin{cases}3-2x\ne0\\3-2x\ge0\end{cases}\Leftrightarrow}3-2x>0\Leftrightarrow2x< 3\Leftrightarrow x< \frac{3}{2}\)

Để \(\sqrt{\frac{4}{2x+3}}\) có nghĩa thì điều kiện là:

\(2x+3>0\Leftrightarrow2x>-3\Leftrightarrow x>-\frac{3}{2}\)

Để \(\sqrt{-\frac{2}{x+1}}\) có nghĩa thì điều kiện là:

\(\hept{\begin{cases}-\frac{2}{x+1}\ge0\\x+1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+1\le0\\x\ne-1\end{cases}\Leftrightarrow}x< -1\)

AH
Akai Haruma
Giáo viên
30 tháng 8 2020

Lời giải:

a) ĐK: \(\left\{\begin{matrix} x-2\neq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow x-2>0\Leftrightarrow x>2\)

b) ĐK: \(\left\{\begin{matrix} x+2\neq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow x\geq 2\)

c) ĐK: \(\left\{\begin{matrix} x^2-4\neq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x-2)(x+2)\neq 0\\ x\geq 2\end{matrix}\right.\Leftrightarrow x>2\)

d) ĐK: \(3-2x>0\Leftrightarrow x< \frac{3}{2}\)

e) ĐK: \(2x+3>0\Leftrightarrow x> \frac{-3}{2}\)

f) ĐK: \(x+1< 0\Leftrightarrow x< -1\)