Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm max:
Áp đụng bất đẳng thức AM-GM ta có:
\(\left(x+y\right)+z\le\frac{\left(x+y\right)^2+1}{2}+\frac{z^2+1}{2}=\frac{x^2+y^2+z^2+2xy+2}{2}=2+xy\)
Chứng minh tương tự ta có: \(2+xz\ge x+y+z;2+yz\ge x+y+z\)
Từ trên ta lại có: \(P=\frac{x}{2+yz}+\frac{y}{2+zx}+\frac{z}{2+xy}\le\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y=1\\z=0\end{cases}}\)
\(\Rightarrow Max_P=1\)
Tìm Min
Áp BĐT Cauchy - Schwaz ta có:
\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)+3xyz}\left(1\right)\)
Đặt \(t=x+y+z\left(\sqrt{2}\le t\le\sqrt{6}\right)\)
Mặt khác ta có: \(9xyz\le\left(x+y+z\right)\left(xy+yz+xz\right)=\frac{t\left(t^2-2\right)}{2}\)
Kết hợp với \(\left(1\right)\Rightarrow P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)+3xyz}\ge\frac{6t}{t^2+10}\) Luôn đúng với \(\sqrt{2}\le t\le\sqrt{6}\)
Dấu đẳng thức xảy ra chẳng hạn khi \(\hept{\begin{cases}x=\sqrt{2}\\y=z=0\end{cases}}\)
\(\Rightarrow Min_P=\frac{\sqrt{2}}{2}\)
Vậy ...........
Bạn Băng Băng ơi, BD9T AM - GM là bất đẳng thức Cô - si đúng không bạn ?
\(P\le\frac{1}{2}\left(\Sigma\frac{1}{\sqrt{xy}}\right)\le\frac{\left(xy+yz+zx\right)^2}{6x^2y^2z^2}\le\frac{\left(x^2+y^2+z^2\right)^2}{6x^2y^2z^2}=\frac{3}{2}\)
dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=1\)
mình nhầm :) làm lại nhé
\(P\le\frac{1}{2}\left(\Sigma\frac{1}{\sqrt{xy}}\right)\le\frac{\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}{6xyz}\le\frac{xy+yz+zx}{2xyz}\le\frac{x^2+y^2+z^2}{2xyz}=\frac{3}{2}\)
1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)
\(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)
max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)
\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t
\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)
\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)
Hệ đẳng cấp. Xét 2 TH: x = 0 và x khác 0.
+) Th1: x = 0 ---> không thỏa mãn
+) Th2: x khác 0
Đặt: y = ax; z = bx ( a; b > 0)
ta có hệ mới:
\(\hept{\begin{cases}x^2\left(a^2+b^2\right)=50\\x^2\left(1+a+\frac{a^2}{2}\right)=169\\x^2\left(1+b+\frac{b^2}{2}\right)=144\end{cases}}\)
<=> \(\hept{\begin{cases}\frac{a^2+b^2}{1+a+\frac{a^2}{2}}=\frac{50}{169}\\\frac{1+a+\frac{a^2}{2}}{1+b+\frac{b^2}{2}}=\frac{169}{144}\end{cases}}\) <=> \(\hept{\begin{cases}144a^2-50a-50+169b^2=0\\144a^2+288a-50-169b^2-338b=0\end{cases}}\)
Lấy vế dưới trừ vế trên ta có:
\(338a-338b^2-338b=0\) <=> \(a=b^2+b\) Thế vào 1 trong 2 phương trình ta có:
\(144\left(b^2+b\right)^2-50\left(b^2+b\right)-50+169b^2=0\)
<=> \(144b^4+288b^3+263b^2-50b-50=0\)
<=> \(\left(144b^4-25b^2\right)+\left(288b^3-50b\right)+\left(288b-50\right)=0\)
<=> \(\left(144b^2-25\right)\left(b^2+2b+2\right)=0\)
<=> \(144b^2-25=0\)
<=> \(b=\pm\frac{5}{12}\)
+) Với \(b=\frac{5}{12}\)ta có: \(a=\frac{85}{144}\)
Do đó: \(x^2\left[\left(\frac{5}{12}\right)^2+\left(\frac{85}{144}\right)^2\right]=50\)
<=> \(x^2=\frac{41472}{433}\)
=> \(K=xy+yz+zx=ax^2+bx^2+abx^2=x^2\left(a+b+ab\right)\) Em thay vào tính
+) Tương tự với b = -5/12
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(A=\frac{x}{x^2+yz}+\frac{y}{y^2+xz}+\frac{z}{z^2+xy}\leq \frac{x}{4}\left(\frac{1}{x^2}+\frac{1}{yz}\right)+\frac{y}{4}\left(\frac{1}{y^2}+\frac{1}{xz}\right)+\frac{z}{4}\left(\frac{1}{z^2}+\frac{1}{xy}\right)\)
\(\Leftrightarrow A\leq \frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\right)\)
\(\Leftrightarrow A\leq \frac{1}{4}\left(\frac{xy+yz+xz}{xyz}+\frac{x^2+y^2+z^2}{xyz}\right)\)
Theo hệ quả quen thuộc của BĐT Cauchy, ta biết rằng \(xy+yz+xz\leq x^2+y^2+z^2\)
Do đó:
\(A\leq \frac{1}{4}\left(\frac{x^2+y^2+z^2}{xyz}+\frac{x^2+y^2+z^2}{xyz}\right)=\frac{x^2+y^2+z^2}{2xyz}=\frac{1}{2}\)
Vậy $A_{\max}=\frac{1}{2}$. Dấu "=" xảy ra khi $x=y=z=3$
a, Sửa đề \(x+y+z\le2+xy\)
Áp dụng bđt Cô-si có :
\(\left(x+y\right)+z\le\frac{\left(x+y\right)^2+1}{2}+\frac{z^2+1}{2}=\frac{x^2+2xy+y^2+1+z^2+1}{2}\)
\(=\frac{4+2xy}{2}\)
\(=2+xy\)
Dấu "=" khi x = 0 ; y = 1 ; z = 1
b,C/m tương tự câu a có \(x+y+z\le2+yz\)
\(x+y+z\le2zx\)
Ta có : \(P=\frac{x}{2+yz}+\frac{y}{2+zx}+\frac{z}{2+xy}\le\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\)
\(=\frac{x+y+z}{x+y+z}=1\)
Dấu "=" khi x = 0 ; y = 1 ; z = 1