K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2022

gọi H là trung điểm của AB:

\(\Rightarrow IH\perp AB\)

\(\Rightarrow IH=d_{\left(I;\Delta\right)}\)

\(d_{\left(I;\Delta\right)}=\dfrac{\left|3.4-2.\left(-3\right)+7\right|}{\sqrt{4^2+\left(-3\right)^2}}=5\)

mặt khác :\(HB=\dfrac{1}{2}AB\)

\(HB=\dfrac{1}{2}.4=2\)

xét \(\Delta IHB\) ta có:

\(IB=\sqrt{IH^2+HB^2}=\sqrt{5^2+2^2}=\sqrt{29}\)

\(\Rightarrow R=IB=\sqrt{29}\)

vậy pt đường tròn là : \(\left(x-3\right)^2+\left(y+2\right)^2=29\)

Hình vẽ :

undefined

26 tháng 3 2022

gọi H là trung điểm AB

=> \(IH=d_{\left(I,\Delta\right)}=\dfrac{\left|3\cdot2+4\cdot\left(-1\right)+3\right|}{\sqrt{3^2+4^2}}=1\)

\(S_{\Delta IAB}=2\cdot\left(\dfrac{1}{2}\cdot IH\cdot HA\right)=4\)

\(IH\cdot IA=4\Leftrightarrow1\cdot HA=4\Rightarrow HA=4\)

\(\Rightarrow R=IA=\sqrt{IH^2+HA^2}=\sqrt{1^2+4^2}=\sqrt{17}\)

\(\Rightarrow\) Phương trình đường tròn (x-2)2 +(y+1)2=17

NV
31 tháng 3 2023

Đường tròn (C) tâm \(I\left(2;-1\right)\) bán kính \(R=2\sqrt{5}\)

Gọi H là trung điểm AB \(\Rightarrow IH\perp AB\Rightarrow IH=d\left(I;\Delta\right)\)

\(S_{IAB}=\dfrac{1}{2}IH.AB=\dfrac{1}{2}IH.2AH=IH.\sqrt{IA^2-IH^2}=IH.\sqrt{20-IH^2}\)

\(\Rightarrow IH\sqrt{20-IH^2}=8\)

\(\Rightarrow IH^4-20IH^2+64=0\Rightarrow\left[{}\begin{matrix}IH=4\\IH=2\end{matrix}\right.\)

\(\overrightarrow{IM}=\left(-1;-2\right)\Rightarrow IM=\sqrt{5}\), mà \(IH\le IM\Rightarrow IH=2\)

Gọi \(\left(a;b\right)\) là 1 vtpt của \(\Delta\) với a;b không đồng thời bằng 0

\(\Rightarrow\) Phương trình \(\Delta\)\(a\left(x-1\right)+b\left(y+3\right)=0\Leftrightarrow ax+by-a+3b=0\)

\(d\left(I;\Delta\right)=IH\Leftrightarrow\dfrac{\left|2a-b-a+3b\right|}{\sqrt{a^2+b^2}}=2\)

\(\Leftrightarrow\left|a+2b\right|=2\sqrt{a^2+b^2}\)

\(\Leftrightarrow a^2+4ab+4b^2=4a^2+4b^2\)

\(\Rightarrow3a^2-4ab=0\Rightarrow\left[{}\begin{matrix}a=0\\3a=4b\end{matrix}\right.\)

Chọn \(\left[{}\begin{matrix}\left(a;b\right)=\left(0;1\right)\\\left(a;b\right)=\left(4;3\right)\end{matrix}\right.\) \(\Rightarrow\) có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}y+3=0\\4x+3y+5=0\end{matrix}\right.\)

Sửa đề: x^2+y^2+2x+6y-15=0

Δ vuông góc d nên Δ: 3x+4y+c=0

(C);x^2+y^2+2x+6y-15=0

=>x^2+2x+1+y^2+6y+9-25=0

=>(x+1)^2+(y+3)^2=25

=>R=5; I(-1;-3)

Kẻ IH vuông góc AB

=>H là trung điểm của AB

=>AH=6/2=3cm

=>IH=4cm

=>d(I;Δ)=IH=4

=>|c+3-12|/5=4

=>c=-11 hoặc c=29

=>3x+4y-11=0 hoặc 3x+4y+29=0

14 tháng 4 2021

Gọi H là trung điểm AB

\(IH=d\left(I;\Delta\right)=\dfrac{\left|-2-2+3\right|}{\sqrt{5}}=\dfrac{1}{\sqrt{5}}\)

\(\Rightarrow R=\sqrt{IH^2+HA^2}=\sqrt{\dfrac{1}{5}+\dfrac{1}{4}.4}=\sqrt{\dfrac{6}{5}}\)

Phương trình đường tròn: \(\left(x+2\right)^2+\left(y-1\right)^2=\dfrac{6}{5}\)

27 tháng 3 2022

gọi H là trung điểm AB

=>IH⊥AB

=>\(d_{\left(I,d\right)}=\dfrac{\left|1\cdot1-1\cdot1+2\right|}{\sqrt{1^2+\left(-1\right)^2}}=\sqrt{2}\)

=>IH=\(\sqrt{2}\)

Mà HB=\(\dfrac{AB}{2}\)=1

Xét ΔIHB vuông tại H có:

IB=\(\sqrt{IH^2+HB^2}=\sqrt{2+1}=\sqrt{3}\)

=>R=\(\sqrt{3}\)

Vậy đường tròn tâm I (1; -1); R=\(\sqrt{3}\) là:

(x-1)2+(y+1)2=3

 

27 tháng 3 2022

REFER

https://hoc24.vn/index.php/cau-hoi/trong-mat-phang-oxy-cho-diem-i-1-1-va-duong-thang-d-xy20-viet-phuong-trinh-duong-tron-tam-i-cat-d-tai-hai-diem-ab-sao-cho-ab2.5543217878093

27 tháng 3 2022

Khi bn trl r ngừi khác bắt bn lm lại

18 tháng 4 2021

ủa mà ID=d(I;(d)) mà sao ID2+d2(I;(d)) =3 vậy bạn

với lại R sao lại bằng ID+d(I;(d)) vậy bạn

5 tháng 5 2022

mọi người giúp con giải bài này với ạ . Con xin cảm ơn