Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{3^3\cdot2^6}{3^{-4}\cdot2^6}=3^7\)
b: \(=\left(\dfrac{3}{7}\right)^5\cdot\left(\dfrac{3}{7}\right)\cdot\dfrac{5^6}{3^6}:\left(\dfrac{625}{343}\right)^2\)
\(=\dfrac{3^6}{7^6}\cdot\dfrac{5^6}{3^6}:\dfrac{5^8}{7^6}\)
\(=\dfrac{1}{5^2}\)
c: \(=5^{4+3}\cdot\left(\dfrac{5}{2}\right)^{-5}\cdot\dfrac{1}{25}\)
\(=5^5\cdot\left(\dfrac{2}{5}\right)^5=2^5\)
Câu 1 :
a) \(4.\left(\frac{1}{32}\right)^{-2}:\left(2^3.\frac{1}{16}\right)\)
\(=2^2.32^2:\left(\frac{1}{8}.16\right)=\left(2.32\right)^2:2=64^2:2\)
\(=2048=2^{11}\)
b) \(5^2.3^5.\left(\frac{3}{5}\right)^2\)
\(=\left(5.\frac{3}{5}\right)^2.3^5=3^2.3^5=3^7\)
VIẾT CÁC BIỂU THỨC DƯỚI DẠNG LUỸ THỪA CỦA 1 SỐ HỮU TỈ
\(a,4\cdot\left(\frac{1}{32}\right)^{-2}:\left(2^3\cdot\frac{1}{16}\right)\\ =4\cdot1024:\left(8\cdot\frac{1}{16}\right)\\ =4\cdot1024:\frac{1}{2}\\ =2\cdot1024\\ =2\cdot2^{10}\\ =2^{11}\)
\(b,5^2\cdot3^5\cdot\left(\frac{3}{5}\right)^2\\ =5^2\cdot\left(\frac{3}{5}\right)^2\cdot3^5\\ =3^2\cdot3^5\\ =3^7\)
2 SO SÁNH
\(a,10^{20}\text{ và }9^{10}\)
Có: \(9^{10}=\left(3^2\right)^{10}=3^{20}\)
\(\Rightarrow10^{20}>3^{20}\\ \text{hay}\text{ }10^{20}>9^{10}\)
\(b,\left(-5\right)^3\text{ và }\left(-3\right)^{50}\)
Có: \(\left(-3\right)^{50}=3^{50}\)
\(\Rightarrow\left(-5\right)^3< 3^{50}\\ \text{hay }\left(-5\right)^3< \left(-3\right)^{50}\)
\(c,64^3\text{ và }16^{12}\)
Có: \(64^3=\left(4^3\right)^3=4^9;16^{12}=\left(4^2\right)^{12}=4^{24}\)
\(\Rightarrow4^9< 4^{24}\\ hay\text{ }64^3< 16^{12}\)
\(d,\left(\frac{1}{16}\right)^{10}\text{ và }\left(\frac{1}{2}\right)^{50}\)
Có: \(\left(\frac{1}{2}\right)^{50}=\left(\frac{1}{2}\right)^{5\cdot10}=\left[\left(\frac{1}{2}\right)^5\right]^{10}=\left(\frac{1}{32}\right)^{10}\)
\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{32}\right)^{10}\\ \text{hay }\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
\(A=7-\frac{3}{4}+\frac{1}{3}-6-\frac{5}{4}+\frac{4}{3}-5+\frac{7}{4}-\frac{5}{3}\)
\(A=7-6-5+\left(\frac{-3}{4}-\frac{5}{4}+\frac{7}{4}\right)+\left(\frac{1}{3}+\frac{4}{3}-\frac{5}{3}\right)\)
\(A=-4-\frac{1}{4}\)
\(A=\frac{-17}{4}\)
#)Giải :
\(A=\left(7-\frac{3}{4}+\frac{1}{3}\right)-\left(6+\frac{5}{4}-\frac{4}{3}\right)-\left(5-\frac{7}{4}+\frac{5}{3}\right)\)
\(A=7-\frac{3}{4}+\frac{1}{3}-6-\frac{5}{4}+\frac{4}{3}-5-\frac{7}{4}+\frac{5}{3}\)
\(A=\left(7-6-5\right)-\left(-\frac{3}{4}-\frac{5}{4}+\frac{7}{4}\right)+\left(\frac{1}{3}+\frac{4}{3}-\frac{5}{3}\right)\)
\(A=-4-\frac{1}{4}+0\)
\(A=-4\frac{1}{4}=-\frac{17}{4}\)
#~Will~be~Pens~#
\(A=-7+\frac{3}{4}-\frac{1}{3}-6+\frac{5}{4}-\frac{4}{3}-3-\frac{7}{4}+\frac{5}{3}\)
\(A=\left(-7-6-3\right)+\left(\frac{3}{4}+\frac{5}{4}-\frac{7}{4}\right)+\left(\frac{5}{3}-\frac{1}{3}-\frac{4}{3}\right)\)
\(A=-16+\frac{1}{4}+0\)
\(A=-15\frac{3}{4}\)
\(A=\left(-7+\frac{3}{4}-\frac{1}{3}\right)-\left(6-\frac{5}{4}+\frac{4}{3}\right)-\left(3+\frac{7}{4}-\frac{5}{3}\right)\)
\(=-7+\frac{3}{4}-\frac{1}{3}-6+\frac{5}{4}-\frac{4}{3}-3-\frac{7}{4}+\frac{5}{3}\)
\(=\left(-7-6-3\right)+\left(\frac{3}{4}+\frac{5}{4}-\frac{7}{4}\right)+\left(\frac{-1}{3}-\frac{4}{3}+\frac{5}{3}\right)\)
\(=-16-\frac{1}{4}\)
Viết các biêu thức sau dưới dạng lũy thừa của một số nguyên:
a,\(12^3:\left(\frac{1}{3}.4.64\right)\)
\(12^3:\left(\frac{1}{3}.4.64\right)=12^3.3.\frac{1}{2^2}.\frac{1}{4^3}=\frac{12^3}{4^3}.3.\frac{1}{2^2}=3^3.3.\frac{1}{2^2}=\frac{3^4}{2^2}=\frac{9^2}{2^2}=\left(\frac{9}{2}\right)^2\)
K viết được dưới dạng số nguyên