\(80^o\). Tia phân giác của...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2016

ko giai dc nhieu qua voi lại mk ko gioi hih

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:a) ∆ABE = ∆ADC b) Góc BMC = 120oBài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).a) Chứng minh: EM + HC = NH.b) Chứng minh: EN // FM.Bài 3:Cho...
Đọc tiếp

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:

a) ∆ABE = ∆ADC b) Góc BMC = 120o

Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).

a) Chứng minh: EM + HC = NH.

b) Chứng minh: EN // FM.

Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.

Chứng minh rằng : Góc PCQ = 45o

Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.

a) Chứng minh rằng: BE = CD; AD = AE.

b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.

c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.

Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM = EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN.

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

0
6 tháng 1 2019

kìa ai trả lời đi chứ

10 tháng 3 2019

A C B D E M F K

Gọi giao điểm của ED và AM là K.Trên tia đối của MA lấy điểm F sao cho AM=FM.

Xét \(\Delta\)MAB và \(\Delta\)MFC có:

MA=MF,^BMA=^FMC,BM=CM => \(\Delta MAB=\Delta FMC\left(c-g-c\right)\Rightarrow AB=FC=AD,\widehat{ABM}=\widehat{FCM}\)

\(\Rightarrow AB//CF\Rightarrow\widehat{FCA}+\widehat{BAC}=180^0\left(1\right)\)

\(AD\perp AB\Rightarrow\widehat{BAE}+\widehat{EAD}=90^0\)

\(AE\perp AC\Rightarrow\widehat{CAD}+\widehat{EAD}=90^0\)

\(\Rightarrow\widehat{BAE}+\widehat{EAD}+\widehat{CAD}+\widehat{EAD}=180^0\)

\(\Rightarrow\widehat{BAC}+\widehat{EAD}=180^0\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{FCA}=\widehat{EAD}\)

Xét \(\Delta\)ADE và \(\Delta\)CFA có:

AE=AC(gt),^FCA=^EAD(cmt),AD=CF(cmt)

\(\Rightarrow\Delta ADE=\Delta CFA\left(c-g-c\right)\Rightarrow\widehat{AED}=\widehat{CAF}\)

Mặt khác:\(\widehat{CAF}+\widehat{FAF}=90^0\)

\(\Rightarrow\widehat{AED}+\widehat{FAE}=90^0\)

\(\Rightarrow\widehat{EAK}+\widehat{KAE}=90^0\)

\(\Rightarrow\widehat{EKA}=90^0\)

\(\Rightarrow AM\perp DE^{đpcm}\)