Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi bán kính hình tròn tâm \(A\) và \(B\) lần lượt là \(x;y\left(m\right),\left(0< y< x< 3\right)\)
Vì 2 đường tròn tiếp xúc ngoài với nhau nên \(x+u=AB=3\left(m\right)\left(1\right)\)
Diện tích của hai vườn hoa hình tròn tâm \(A\) và \(B\) lần lượt là :,\(\text{π}x^2\left(m^2\right);\text{π}y^2\left(m^2\right)\)
Lại có diện tích bồn hoa bằng tổng diện tích của hai hình tròn bằng \(4,68\text{π}\left(m^2\right)\) nên :
\(\text{π}.x^2+\text{π}.y^2=4,68\text{π}\left(m^2\right)\Rightarrow x^2+y^2=4,68\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}x+y=3\\x^2+y^2=4,68\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3-y\\\left(3-y\right)^2+y^2=4,68\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3-y\\2y^2+6y+4,32=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\\left(9y-5\right)\left(6y-5\right)=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3-y\\\left[{}\begin{matrix}x=1,8\\y=1,2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1,8\\y=1,2\end{matrix}\right.\\\left\{{}\begin{matrix}x=1,2\\y=1,8\end{matrix}\right.\end{matrix}\right.\)
Vậy bán kính của hai khu vường hình tròn tâm A và B lần lượt là 1,2 m và 1,8 m
(O; R) và (O’; R’) tiếp xúc ngoài với nhau
⇒ OO’ = R + r.
O’A ⊥ BP, OB ⊥ BP ⇒ O’A // OB
⇒ ΔPAO’ ΔPBO
⇒ OB = 2.O'A hay R = 2.r
và OP = 2.O’P ⇒ O’P = OO’ = R + r = 3.r
ΔO’AP vuông tại A nên:
O ’ P 2 = O ’ A 2 + A P 2
⇔ ( 3 r ) 2 = r 2 + 4 2 ⇔ 8 r 2 = 16 ⇔ r 2 = 2
Diện tích hình tròn (O’; r) là: S = π . r 2 = 2 π ( c m 2 ) .
(O; R) và (O’; R’) tiếp xúc ngoài với nhau
⇒ OO’ = R + r.
O’A ⊥ BP, OB ⊥ BP ⇒ O’A // OB
⇒ ΔPAO’ ΔPBO
⇒ OB = 2.O'A hay R = 2.r
và OP = 2.O’P ⇒ O’P = OO’ = R + r = 3.r
ΔO’AP vuông tại A nên: O ' P 2 = O ' A 2 + A P 2
⇔ ( 3 r ) 2 = r 2 + 4 2 ⇔ 8 r 2 = 16 ⇔ r 2 = 2
Diện tích hình tròn (O’; r) là: S = π · r 2 = 2 π cm 2
Cho hai đường tròn (O; R) và (O'; r) tiếp xúc ngoài (R > r). Hai tiếp tuyến chung AB và A'B' của hai đường tròn (o),(O') cắt nhau tại P(A và A' thuộc đường tròn (O'), B và B' thuộc đường tròn (O)). Biết PA = AB = 4 cm. Tính diện tích hình tròn (O').
Hướng dẫn làm bài:
Vì AB là tiếp tuyến chung của (O) và (O’) nên OB ⊥ AB và O’A ⊥ AB
Xét hai tam giác vuông OPB và O’AP, ta có:
ˆA=ˆB=900A^=B^=900
ˆP1P1^ chung
Vậy ΔOBP ~ ∆ O’AP
⇒rR=PO′PO=PAPB=48=12⇒R=2r⇒rR=PO′PO=PAPB=48=12⇒R=2r
Ta có PO’ = OO’ = R + r = 3r (do AO’ là đường trung bình của ∆OBP)
Áp dụng định lí Py-ta-go trong tam giác vuông O’AP
O’P = O’A2 + AP2 hay (3r)2 = r2 + 42 ⇔ 9r2 = r2 + 16 ⇔ 8 r2 =16 ⇔ r2 = 2
Diện tích đường tròn (O’;r) là: S = π. r2 = π.2 = 2π (cm2)
Vì AB là tiếp tuyến chung của (O) và (O’) nên OB ⊥ AB và O’A ⊥ AB
Xét hai tam giác vuông OPB và O’AP, ta có:
ˆA=ˆB=900A^=B^=900
ˆP1P1^ chung
Vậy ΔOBP ~ ∆ O’AP
⇒rR=PO′PO=PAPB=48=12⇒R=2r⇒rR=PO′PO=PAPB=48=12⇒R=2r
Ta có PO’ = OO’ = R + r = 3r (do AO’ là đường trung bình của ∆OBP)
Áp dụng định lí Py-ta-go trong tam giác vuông O’AP
O’P = O’A2 + AP2 hay (3r)2 = r2 + 42 ⇔ 9r2 = r2 + 16 ⇔ 8 r2 =16 ⇔ r2 = 2
Diện tích đường tròn (O’;r) là: S = π. r2 = π.2 = 2π (cm2)