Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Bán kính: \(R=2\sqrt{545}\)
Phương trình đường tròn: \(\left(x+1\right)^2+\left(y-2\right)^2=2180\)
Giao điểm của \(\left(C\right);\left(d\right)\) có tọa độ là nghiệm hệ:
\(\left\{{}\begin{matrix}x+3y+5=0\\\left(x+1\right)^2+\left(y-2\right)^2=2180\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3y-5\\\left(-3y-4\right)^2+\left(y-2\right)^2=2180\end{matrix}\right.\)
\(\Leftrightarrow...\)
a, Bán kính: \(R=2\sqrt{5}\)
Phương trình đường tròn: \(\left(x+1\right)^2+\left(y-2\right)^2=20\)
Giao điểm của d và (C) có tọa độ là nghiệm hệ:
\(\left\{{}\begin{matrix}\left(x+1\right)^2+\left(y-2\right)^2=20\\x+3y+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3y+4\right)^2+\left(y-2\right)^2=20\\x=-3y-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10y^2+20y=0\\x=-3y-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=0\\x=-5\end{matrix}\right.\\\left\{{}\begin{matrix}y=-2\\x=1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}M=\left(0;-5\right)\\N=\left(-2;1\right)\end{matrix}\right.\) là các giao điểm
b, Gọi H là trung điểm AB.
Đường thẳng \(\Delta\) vuông góc với d nên có phương trình dạng: \(3x-y+m=0\left(m\in R\right)\)
Ta có: \(S_{IAB}=\dfrac{1}{2}.R^2.sinAIB=10.sinAIB=5\sqrt{3}\)
\(\Rightarrow sinAIB=\dfrac{\sqrt{3}}{2}\)
Mà tam giác ABC tù nên \(\widehat{AIB}=120^o\)
\(\Rightarrow\widehat{HBI}=30^o\)
Khi đó:
\(IH=d\left(I;\Delta\right)\)
\(\Leftrightarrow R.sinHBI=\dfrac{\left|-3-2+m\right|}{\sqrt{10}}\)
\(\Leftrightarrow2\sqrt{5}.sin30^o=\dfrac{\left|m-5\right|}{\sqrt{10}}\)
\(\Leftrightarrow m=5\pm5\sqrt{2}\)
\(\Rightarrow\left[{}\begin{matrix}\Delta:3x-y+5+5\sqrt{2}=0\\\Delta:3x-y+5-5\sqrt{2}=0\end{matrix}\right.\)
Đường thẳng Δ song song với d ⇒ Δ: x + y + c = 0, (c ≠ 0)
Vì Δ đi qua A ⇒ 3 + 0 + c = 0 ⇒ c = -3(tm)
Vậy đường thẳng Δ có dạng: x+y-3=0
Vì đường tròn có tâm I thuộc d nên I(a;-a)
Vì đường tròn đi qua A, B nên I A 2 = I B 2 ⇒ (3 - a ) 2 + a 2 = a 2 + (2 + a ) 2 ⇔ (3 - a ) 2 = (2 + a ) 2
Vậy phương trình đường tròn có dạng:
Ta có:
Giả sử elip (E) có dạng:
Vì (E) đi qua B nên:
Mà
Vậy phương trình chính tắc của elip (E) là:
♬ დ დ MINIGAME NHANH NHƯ CHỚP SỐ THỨ 7 NGÀY 16/2/2019♬ დ დ Ⓐ Ⓛ Ⓕ Ⓐ Ⓩ Ⓘ —->Ra mắt Shop Quà tặng Alfazi: https://alfazi.edu.vn/question/5b7cb22b658d8953adc4773c Ⓐ Ⓛ Ⓕ Ⓐ Ⓩ Ⓘ —->Mua hàng tại Shop Quà tặng Alfazi: https://alfazi.edu.vn/question/5b7cb44b658d8953adc47748 Ⓐ Ⓛ Ⓕ Ⓐ Ⓩ Ⓘ LINK MỜI BẠN BÈ THAM GIA SỐ THỨ 7 NHANH NHƯ CHỚP: https://alfazi.edu.vn/question/5c6818c4641b064a18a2575b (Copy gửi cho các bạn của mình nhé!) ❁ ✪ 1. Thời gian: Bắt đầu từ lúc 6h hoặc 8h Kết thúc lúc 21h ngày hôm sau. Thời gian công bố kết quả: 21h30 phút ngày hôm sau. ❁ ✪ 2. CÂU HỎI NGÀY HÔM NAY: “Bạn làm việc gì đầu tiên mỗi buổi sáng?” 👌🏻Giải thích câu trả lời! ❁ ✪ 3.Hình thức: Khi các bạn tham gia MiniGame Nhanh Như Chớp, các bạn sẽ nhận được ĐIỂM. ĐIỂM sẽ được tích luỹ từ số này qua số khác của Minigame. Các bạn hãy tích luỹ ĐIỂM để mua hàng tại Shop: ❁ ✪ -Tham gia trả lời câu hỏi:+1 điểm ❁ ✪ -Mỗi câu trả lời đúng: +1 điểm ❁ ✪ -Mời một bạn cùng tham gia: +1 điểm/1 bạn ❁ ✪ Các bạn hãy comment theo mẫu: “Câu trả lời+tên 3 bạn mà bạn đã mời” ——>Chỉ những bình luận làm theo mẫu mới được tính❤️❤️ ❁ ✪ LINK MỜI BẠN BÈ THAM GIA SỐ THỨ 7 NHANH NHƯ CHỚP: https://alfazi.edu.vn/question/5c6818c4641b064a18a2575b (Copy gửi cho các bạn của mình nhé!) ❁ ✪ ĐIỂM SẼ ĐƯỢC TÍCH LUỸ TỪ SỐ NÀY QUA SỐ KHÁC CỦA MINIGAME NHANH NHƯ CHỚP NÊN CƠ HỘI RẤT NHIỀU CÁC BẠN NHÉ! ❁ ✪ Các bạn sẽ thắc mắc điểm dùng để làm gì? ❁ ✪ ĐIỂM sẽ dùng để mua hàng tại Shop Alfazi. ❁ ✪ —->Ra mắt Shop Quà tặng Alfazi: https://alfazi.edu.vn/question/5b7cb22b658d8953adc4773c ❁ ✪ —->Mua hàng tại Shop Quà tặng Alfazi: https://alfazi.edu.vn/question/5b7cb44b658d8953adc47748 ❁ ✪ LINK MỜI BẠN BÈ THAM GIA SỐ THỨ 7 NHANH NHƯ CHỚP: https://alfazi.edu.vn/question/5c6818c4641b064a18a2575b (Copy gửi cho các bạn của mình nhé!) Thân, Nhóm phát triển cộng đồng❤️❤️
\(d\left(A\left(P\right)\right)=\frac{\left|2\left(-2\right)-2.1+1.5-1\right|}{\sqrt{2^2+\left(-2\right)^2+1^2}}=\frac{2}{3}\)
(P) có vectơ pháp tuyến là \(\overrightarrow{n_p}=\left(2;-2;1\right);\)
d có vectơ pháp tuyến là \(\overrightarrow{u_d}=\left(2;3;1\right);\left[\overrightarrow{n_p},\overrightarrow{u_d}\right]=\left(-5;0;10\right)\)
Theo giả thiết suy ra (Q) nhận \(\overrightarrow{n}=-\frac{1}{5}\left[\overrightarrow{n_p},\overrightarrow{u_d}\right]=\left(1;0;-2\right)\) làm vectơ pháp tuyến
Suy ra \(\left(Q\right):x-2z+12=0\)