\(\left\{{}\begin{matrix}x< 1\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

Suy luận D là chính xác

9 tháng 5 2017

Suy luận C là chính xác do \(0< x< 1\) nên x > 0 nên nhân hai vế của bất phương trình \(y< 1\) với x ta được \(xy< x\) và do x < 1 nên theo tính chất bắc cầu của bất phương trình ta được: \(xy< 1\).

14 tháng 10 2019
https://i.imgur.com/Yq3VaR1.jpg
14 tháng 10 2019

Câu 1 bạn có viết sai đề k

7 tháng 4 2017

a) Hình a:


b)Hình b:
NV
19 tháng 2 2020

Mệnh đề B và D đều sai

Mệnh đề B chỉ đúng khi a;b;c;d dương

Mệnh đề D thì sai rõ ràng

22 tháng 7 2018

sử dụng phương pháp thế nha bn , rút 1 ẩn từ phương trình đơn giản rồi thế vào phương trình còn lại rồi giải bình thường . tập làm đi cho quen nha bn :)

22 tháng 7 2018

được rồi bạn ơi :v dò lên hỏi kết quả đúng sai thôi

15 tháng 4 2017

a) <=>

Miền nghiệm của hệ bất phương trình là miền không bị gạch sọc ở hình bên (không kể các điểm).

b) <=>

Miền nghiệm của hệ bất phương trình là miền tam giác ABC bao gồm cả các điểm trên cạnh AC và cạnh BC (không kể các điểm của cạnh AB).

6 tháng 4 2017

a) \(x^2\ge4x\)(1)

Nếu \(\left[{}\begin{matrix}x_1=0\\x_2=4\end{matrix}\right.\) \(\Rightarrow VT=VP\)

Nếu \(x< 0\Rightarrow VT>0;VP< 0\)=> \(VT>VP\)

Nếu 0<x<4 \(\Rightarrow VT< VP\)

nếu x> 4\(\Rightarrow VT>VP\)

Kết luận nghiệm BPT (1): \(\left[{}\begin{matrix}x\le0\\x\ge4\end{matrix}\right.\)

b)

(1) \(\Rightarrow\left[{}\begin{matrix}x< \dfrac{3-\sqrt{5}}{2}\\x>\dfrac{3+\sqrt{5}}{2}\end{matrix}\right.\)

(2) \(\Rightarrow-2\le x\le3\)

KL nghiệm

\(\left[{}\begin{matrix}-2\le x< \dfrac{3-\sqrt{5}}{2}\\\dfrac{3+\sqrt{5}}{2}< x\le3\end{matrix}\right.\)

9 tháng 5 2017

a)\(Bpt\Leftrightarrow\) \(\left\{{}\begin{matrix}x^2-4x\ge0\left(1\right)\\\left(2x-1\right)^2-9>0\left(2\right)\end{matrix}\right.\)
Giải (1): \(x^2-4x\ge0\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le0\end{matrix}\right.\)
Giải (2): \(\left(2x-1\right)^2-9=\left(2x-1\right)^2-3^2=\left(2x-4\right)\left(2x+2\right)\)
\(\left(2x-4\right)\left(2x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vì vậy: \(\left(2x-1\right)^2-9< 0\Leftrightarrow-1< x< 2\).
Kết hợp điều kiện \(\left(1\right)\)\(\left(2\right)\) suy ra: \(-1< x\le0\) thỏa mãn hệ bất phương trình.

17 tháng 6 2019

\(\left\{{}\begin{matrix}3x+2y=7\\x^2+y^2-7x+xy=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2y=7\\x^2+y^2-3x^2-2xy+xy=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+2y=7\\-2x^2-xy+y^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+2y=7\\-\left(x+y\right)\left(2x-y\right)=0\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}3x+2y=7\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=-7\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}3x+2y=7\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Vậy .......

9 tháng 8 2018

1. \(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=5\\x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=9\end{matrix}\right.\) ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2y+xy^2+x+y=5xy\\x^4y^2+x^2y^4+x^2+y^2=9x^2y^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^4y^2+x^2y^4+x^2+y^2=25x^2y^2\\x^4y^2+x^2y^4+x^2+y^2=9x^2y^2\end{matrix}\right.\)\(\Leftrightarrow0=16x^2y^2\)

\(\Rightarrow\) phương trình vô nghiệm

14 tháng 11 2017

Đặt S=x+y;P=xy giải ra :V