Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x}-\frac{y}{2}=1\)
\(\Leftrightarrow\frac{1}{x}=1+\frac{y}{2}\)
\(\Leftrightarrow\frac{1}{x}=\frac{2}{2}+\frac{y}{2}\)
\(\Leftrightarrow\frac{1}{x}=\frac{2+y}{2}\)
\(\Leftrightarrow1.2=x.\left(2+y\right)\)
\(\Leftrightarrow2=x.\left(2+y\right)\)
\(\Leftrightarrow x,2+y\inƯ\left(2\right)\)
\(\Leftrightarrow x,2+y\in\left\{\pm1;\pm2\right\}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm1\\2+y=\pm1\end{cases}}\orbr{\begin{cases}x=\pm2\\2+y=\pm2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1;-1\\y=-1;-3\end{cases}}\orbr{\begin{cases}x=2;-2\\y=0;-4\end{cases}}\)
Gọi số đường thẳng là n.
Mỗi đường thẳng sẽ cắt n-1 đường còn lại tại n-1 điểm. Đếm như thế thì ta sẽ có tổng số điểm là n(n-1), nhưng mỗi điểm sẽ được đếm 2 lần. (chẳng hạn, khi đếm giao điểm của đường 1 với các đường còn lại ta đã đếm giao điểm của đường 1 và đường 2, nhưng khi đếm giao của đường 2 với các đường còn lại ta lại đếm giao đường 2 và đường 1 thêm một lần nữa).
Do đó, tổng số điểm phải là \(\frac{n\left(n-1\right)}{2}=300\:\Leftrightarrow\:n=25\)
Vậy số đường thẳng là 25 đường.
Vì trên mặt phẳng có 10 điểm mà không có 3 điểm nào thẳng hàng nên lấy một điểm bất kì nối với 9 điểm còn lại thì ta được 9 đường thẳng rồi điểm thứ hai thì có 8 đường thẳng .... cứ như thế cho đến điểm cuối cùng.
Nên số đường thẳng ta kẻ được từ 10 điểm trên một mặt phẳng mà khôn có 3 điểm nào thẳng hàng là:
10 x (10 - 1) : 2 = 45 ( đường thẳng)
Đáp số 45 đường thẳng
a) Vì có n điểm nên mỗi điểm ta vẽ được n-1 đường thẳng (vì không có 3 điểm nào thẳng hàng)
nên với n điểm ta vẽ được n(n-1) đường thẳng.
Nhưng mỗi đường thẳng đã được tính 2 lần nên chỉ có n(n-1)/2 đường thẳng.
b) vì qua n điểm kẻ được 28 đường thẳng nên áp dụng công thức ở câu a) ta có:
n(n-1)/2=28 suy ra n=8.
c) mình không hiểu đường thẳng đôi mắt cắt nhau là gì nên không giúp bạn được.
a)Cho n điểm không có 3 điểm thẳng hàng kẻ các đường thẳng đi qua từng cặp điểm.Hỏi có bao nhêiu đường thẳng?
.b)Nếu qua n điểm trên kẻ được 28 đường thẳng thì n bằng bao nhiêu ?
c) Cho 4 đường thẳng đôi mắt cắt nhau. Hỏi có bao nhiêu giao điểm tạo thành ?
Áp dụng công thức tìm số đường thẳng phân biệt khi biết số giao điểm, gọi số giao điểm là n, ta có:
Số đường thẳng phân biệt tạo được\(=1+...+\left(n-1\right)\)
Vậy từ bài toán ta được: \(1+2+...+\left(n-1\right)=8\)
\(\Rightarrow\left[1+\left(n-1\right)\right]\cdot\frac{\left(n-1\right)}{2}=8\)
\(\Rightarrow\left(1+n-1\right)\left(n-1\right):2=8\)
\(\Rightarrow n\cdot\left(n-1\right):2=8\)
\(\Rightarrow n\cdot\left(n-1\right)=16\)
1. a ) Câu hỏi của Hà Nhật Anh - Toán lớp 6 - Học toán với OnlineMath