\(\int\frac{1}{1-e^x}dx\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2015

ta có

\(\int\frac{dx}{1-e^x}=\int\frac{1-e^x+e^x}{1-e^x}dx=\int dx+\int\frac{e^x}{1-e^x}dx=\int dx-\int\frac{d\left(1-e^x\right)}{1-e^x}=x-ln\left|1-e^x\right|+C\)

18 tháng 1 2016

a)

\(\frac{1}{x^2+x+1}dx=\frac{1}{\left(x-\frac{1}{4}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}dx\)

Đặt

\(\left(x-\frac{1}{4}\right)=\frac{\sqrt{3}}{2}tant\) => dx=\(\frac{\sqrt{3}}{2}\left(1+tan^2t\right)dt\) =>\(\frac{1}{x^2+x+1}dx=\frac{1}{\frac{3}{4}\left(1+tan^2t\right)+\frac{3}{4}}\left(1+tan^2t\right)dt=\frac{3}{4}dt=\frac{3}{4}t+C\) 

Với \(\left(x-\frac{1}{4}\right)=\frac{\sqrt{3}}{2}tant=>t=\left(\frac{2\sqrt{3}}{4x-1}\right)\)

18 tháng 1 2016

Câu b nhá :

\(\frac{1}{x^2+2x+2}dx=\frac{1}{\left(x+1\right)^2+\left(\sqrt{2^2}\right)}dx\)

Đặt

 \(x+1=\sqrt{2}tant=>dx=\sqrt{2}\left(1+tan^2t\right)dt\)

=> \(\frac{1}{x^2+2x+3}dx=\frac{1}{2\left(tan^2t+1\right)}.\left(1+tan^2t\right)dt=\frac{1}{2}dt=\frac{1}{2}t+C\)

Với

\(x+1=\sqrt{2}tant=>tant=\frac{x+1}{\sqrt{2}}<=>t=arctan\left(\frac{x+1}{\sqrt{2}}\right)\)

14 tháng 10 2015

Đăt \(x=tant\Rightarrow dx=\frac{1}{cos^2t}dt\)

thau vào tích phân ta có

\(\int\frac{1}{cos^2t\left(tan^2t+1\right)}dt=\int\frac{1}{cos^2t\frac{1}{cos^2t}}dt=\int dt=t+C=arctanx+C\)

13 tháng 10 2015

ta có

\(\int\frac{2x+1}{\left(x^2+x+1\right)^3}dx=\int\frac{d\left(x^2+x+1\right)}{\left(x^2+x+1\right)^3}=-\frac{1}{2\left(x^2+x+1\right)^2}+C\)

14 tháng 10 2015

ta có

\(\int\frac{dx}{\sqrt{x^2+1}+\sqrt{2-x^2}}=\int\frac{\sqrt{x^2+1}+\sqrt{2-x^2}}{\left(\sqrt{x^2+1}+\sqrt{1-x^2}\right)\left(\sqrt{x^2+1}-\sqrt{2-x^2}\right)}dx=\int\frac{\sqrt{x^2+1}+\sqrt{2-x^2}}{3x^2}dx=\int\frac{\sqrt{x^2+1}}{3x^2}+\int\frac{\sqrt{2-x^2}dx}{3x^2}\)=\(\frac{1}{3}\left(I_1+I_2\right)\)

Tính \(I_1=\int\frac{\sqrt{1+x^2}}{x^2}dx\)

\(tant=x\Rightarrow dx=\frac{1}{cos^2x}dx\)

ta có

\(\int\frac{\sqrt{1+tan^2t}}{cos^2t.tan^2t}dt=\int\frac{\frac{1}{cosx}}{sin^2t}dx=\int\frac{d\left(sint\right)}{sin^2t\left(1-sin^2t\right)}=\int\frac{dy}{y^2\left(1-y^2\right)}\)

làm tương tự câu trên ta tính đc \(I_1,I_2\) TA TÍNH ĐC I

6 tháng 2 2016

Hỏi đáp ToánBài khá đơn giản mà em

6 tháng 2 2016

e- e2

4 tháng 2 2016

Hỏi đáp Toán

23 tháng 1 2016

Dễ