\(A=\frac{4}{2.5}+\frac{4}{5.8}+...+\frac{4}{98.101}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

\(A=\frac{4}{2.5}+\frac{4}{5.8}+...+\frac{4}{98.101}\)

\(A=\frac{4}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{98.101}\right)\)

\(A=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{101}\right)\)

\(A=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{101}\right)\)

\(A=\frac{4}{3}.\frac{99}{102}=\frac{66}{101}\)

8 tháng 8 2016

\(\text{Ta có: }\) \(A=\frac{4}{2.5}+\frac{4}{5.8}+...+\frac{4}{98.101}\)

                    \(=\frac{4.3}{2.5.3}+\frac{4.3}{5.8.3}+\frac{4.3}{8.11.3}+.....+\frac{4.3}{98.101.3}\)

                      \(=\frac{4}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+.....+\frac{3}{98.101}\right)\)

                         \(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{101}\right)\)

                          \(=\frac{4}{3}.\frac{99}{102}=\frac{66}{101}\)

7 tháng 8 2016

\(A=\frac{4}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+.........+\frac{3}{98.101}\right)\)

\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+............+\frac{1}{98}-\frac{1}{101}\right)\)

\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{101}\right)\)

\(=\frac{4}{3}.\frac{99}{202}\)

\(=\frac{66}{101}\)

7 tháng 8 2016

\(A=\frac{4}{2.5}+\frac{4}{5.8}+\frac{4}{8.11}+...+\frac{4}{98.101}\) 

\(\frac{4}{3}A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{98.101}\)

\(\frac{4}{3}A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{101}\) 

\(A=\left(\frac{1}{2}-\frac{1}{101}\right).\frac{3}{4}\) 

\(A=\frac{99}{202}.\frac{3}{4}=\frac{297}{808}\)

8 tháng 6 2019

#)Giải :

\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{98.101}\)

\(\Rightarrow3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{99.101}\)

\(\Rightarrow3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{99}-\frac{1}{101}\)

\(\Rightarrow3A=\frac{1}{2}-\frac{1}{101}\)

\(\Rightarrow3A=\frac{99}{202}\)

\(\Leftrightarrow A=\frac{33}{202}\)

8 tháng 6 2019

\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{101}\right)\)

\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{101}\right)\)

\(A=\frac{1}{3}.\frac{99}{202}=\frac{33}{202}\)

30 tháng 3 2019

a) \(\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{97.99}\)

\(=4.\left(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\right)\)

\(=4.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=4.\left(\frac{1}{3}-\frac{1}{99}\right)\)

\(=4.\frac{32}{99}\)

\(=\frac{128}{99}\)

30 tháng 3 2019

\(\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{97.99}\)

\(=2\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

\(=2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=2\left(\frac{1}{3}-\frac{1}{99}\right)\)

\(=2.\frac{32}{99}\)

\(=\frac{64}{99}\)

10 tháng 5 2019

\(A=\frac{4}{2.5}+\frac{4}{5.8}+\frac{4}{8.11}+...+\frac{4}{65.68}\)

\(A=\frac{4}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{65.68}\right)\)

\(A=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{65}-\frac{1}{68}\right)\)

\(A=\frac{4}{3}.\left[\frac{1}{2}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{8}-\frac{1}{8}\right)+...+\left(\frac{1}{65}-\frac{1}{65}\right)-\frac{1}{68}\right]\)

\(A=\frac{4}{3}.\left[\frac{1}{2}-\frac{1}{68}\right]\)

\(A=\frac{4}{3}.\frac{33}{68}\)

\(A=\frac{11}{17}\)

~ Hok tốt ~

10 tháng 5 2019

\(A=\frac{4}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+....+\frac{1}{65}-\frac{1}{68}\right)\)

     \(=\frac{4}{3}\left(\frac{1}{2}-\frac{1}{68}\right)\)

       \(=\frac{4}{3}\times\frac{33}{68}=\frac{11}{17}\)

9 tháng 8 2015

S = 4/2.5 + 4/5.8 + 4/8.11 + ... + 4/65.48

S = 4/3 . ( 3/2.5 + 3/5.8 + 3/8.11 + ... + 3/65.68 )

S = 4/3 . ( 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/65 - 1/68 )

S = 4/3 . ( 1/2 - 1/68 )

S = 4/3 . 33/68

S = 11/17

12 tháng 4 2018

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

12 tháng 3 2017

\(=\frac{4}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+....+\frac{3}{80.83}\right)\)

\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+....+\frac{1}{80}-\frac{1}{83}\right)\)

\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{83}\right)\)

\(=\frac{54}{83}\)

12 tháng 3 2017

\(\frac{4}{2\cdot5}+\frac{4}{5\cdot8}+............+\frac{4}{80\cdot83}\)

\(=4\left(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+............+\frac{4}{80\cdot83}\right)\)

\(=\frac{4}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...........+\frac{1}{80}-\frac{1}{83}\right)\)

\(=\frac{4}{3}\cdot\frac{81}{166}\)

\(=\frac{54}{83}\)

CHúc các bạn học tôt !!!!!!!!!!!!!!!!!!!

31 tháng 3 2018

\(A=\frac{4}{2.5}+\frac{4}{5.8}+\frac{4}{8.11}+........+\frac{4}{65.68}\)

\(A=4\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+......+\frac{1}{65.68}\right)\)

\(A=\frac{4}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+..........+\frac{3}{65.68}\right)\)

\(A=\frac{4}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-.........-\frac{1}{68}\right)\)

\(A=\frac{4}{3}\left(\frac{1}{2}-\frac{1}{68}\right)\)

\(A=\frac{4}{3}\left(\frac{34}{68}-\frac{1}{68}\right)\)

\(A=\frac{4}{3}.\frac{33}{68}\)

\(A=\frac{11}{17}\)

25 tháng 4 2018

\(A=\frac{4}{2.5}+\frac{4}{5.8}+\frac{4}{8.11}+.........+\frac{4}{65.68}\)

\(A=4\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+.........+\frac{1}{65.68}\right)\)

\(A=\frac{4}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+..........+\frac{3}{65.68}\right)\)

\(A=\frac{4}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-...........-\frac{1}{65}-\frac{1}{68}\right)\)

\(A=\frac{4}{3}\left(\frac{1}{2}-\frac{1}{68}\right)\)

\(A=\frac{4}{3}\left(\frac{34}{68}-\frac{1}{68}\right)\)

\(A=\frac{4}{3}\left(\frac{33}{68}\right)\)

\(A=\frac{11}{17}\)

Vậy A = \(\frac{11}{17}\)

Chúc bạn học tốt!