\(\frac{1}{2!}+\frac{2}{^{3!}}+\frac{3}{4!}+...+\frac{n-1}{n!}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2019

1) Tính C

\(C=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+....+\frac{n-1}{n!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)

\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)

\(=1-\frac{1}{n!}\)

9 tháng 11 2019

3) a) Ta có : \(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)

\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}\left(đpcm\right)\)

12 tháng 9 2019

1 Tính : 

a) \(A=\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{\left(n-1\right).n}\)

\(=\frac{1}{1.2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\right)\)

\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{n}\right)\)

\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{n}\)

\(=\frac{1}{n}\)

b) \(B=\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{\left(n-4\right).n}\)

\(=\frac{4}{1.5}-\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{\left(n-4\right).n}\right)\)

\(=\frac{4}{5}-\left(\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{\left(n-4\right).n}\right)\)

\(=\frac{4}{5}-\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)

\(=\frac{4}{5}-\left(\frac{1}{5}-\frac{1}{n}\right)\)

\(=\frac{4}{5}-\frac{1}{5}+\frac{1}{n}\)

\(=\frac{3}{5}+\frac{1}{n}\)

c) \(C=1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{10}}\)

\(=1-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

Đặt \(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)

\(\Rightarrow C=1-B\left(1\right)\)

\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)

Lấy 2B trừ B ta có : 

\(2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

\(B=1-\frac{1}{2^{10}}\left(2\right)\)

Thay (2) vào (1) ta có :

\(C=1-\left(1-\frac{1}{10}\right)\)

\(=1-1+\frac{1}{10}\)

\(=\frac{1}{10}\)

Vậy \(C=\frac{1}{10}\)

c, \(\frac{-32}{-2^n}=4\)

\(\Rightarrow-2^n=-32:4\)

\(\Rightarrow-2^n=-8\)

\(\Rightarrow-2^n=-2^3\Rightarrow n=3\)

d, \(\frac{8}{2^n}=2\)

\(\Rightarrow2^n=8:2\)

\(\Rightarrow2^n=4\)

\(\Rightarrow2^n=2^2\Rightarrow n=2\)

e, \(\frac{25^3}{5^n}=25\)

\(\Rightarrow5^n=25^3:25\)

\(\Rightarrow5^n=25^2\)

\(\Rightarrow5^n=5^4\Rightarrow n=4\)

i , \(8^{10}:2^n=4^5\)

\(\Rightarrow2^n=8^{10}:4^5\)

\(\Rightarrow2^n=\left(2^3\right)^{10}:\left(2^2\right)^5\)

\(\Rightarrow2^n=2^{30}:2^{10}\)

\(\Rightarrow2^n=2^{20}\Rightarrow n=20\)

k, \(2^n.81^4=27^{10}\)

\(\Rightarrow2^n=27^{10}:81^4\)

\(\Rightarrow2^n=\left(3^3\right)^{10}:\left(3^4\right)^4\)

\(\Rightarrow2^n=3^{30}:3^{16}\)

\(\Rightarrow2^n=3^{14}\)

\(\Rightarrow2^n=4782969\)Không chia hết cho 2 nên ko có Gt n thỏa mãn 

31 tháng 5 2016

1.

a.

\(\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{7}\right)\)

\(=\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\)

\(=\frac{35-21-15}{105}\)

\(=-\frac{1}{105}\)

b.

\(\frac{3}{5}-\left(\frac{3}{4}-\frac{1}{2}\right)\)

\(=\frac{3}{5}-\frac{3}{4}+\frac{1}{2}\)

\(=\frac{12-15+10}{20}\)

\(=\frac{7}{20}\)

c.

\(\frac{4}{7}-\left(\frac{2}{5}+\frac{1}{3}\right)\)

\(=\frac{4}{7}-\frac{2}{5}-\frac{1}{3}\)

\(=\frac{60-42-35}{105}\)

\(=-\frac{17}{105}\)

2.

a.

\(S=-\frac{1}{1\times2}-\frac{1}{2\times3}-\frac{1}{3\times4}-...-\frac{1}{\left(n-1\right)\times n}\)

\(S=-\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{\left(n-1\right)\times n}\right)\)

\(S=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(S=-\left(1-\frac{1}{n}\right)\)

\(S=-1+\frac{1}{n}\)

b.

\(S=-\frac{4}{1\times5}-\frac{4}{5\times9}-\frac{4}{9\times13}-...-\frac{4}{\left(n-4\right)\times n}\)

\(S=-\left(\frac{4}{1\times5}+\frac{4}{5\times9}+\frac{4}{9\times13}+...+\frac{4}{\left(n-4\right)\times n}\right)\)

\(S=-\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)

\(S=-\left(1-\frac{1}{n}\right)\)

\(S=-1+\frac{1}{n}\)

Chúc bạn học tốtok

 

14 tháng 8 2017

câu g) 

\(G=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{121}-1\right).\)

\(=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}...\cdot\frac{120}{121}\)

\(=\frac{3.\left(2.4\right).\left(3.5\right)...\left(10.12\right)}{2.2.3.3.4.4.5.5....11.11}\)

\(=\frac{12}{3}=4\)

14 tháng 8 2017

câu mình trả lời sai rồi thông cảm

15 tháng 9 2015

1.a.\(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(\frac{4}{5}-\frac{3}{4}\right)^2=\frac{17}{12}.\left(\frac{1}{20}\right)^2=\frac{17}{12}.\frac{1}{400}=\frac{17}{4800}\)

b. \(2\div\left(\frac{1}{2}-\frac{2}{3}\right)^3=2\div\left(-\frac{1}{6}\right)^3=2\div\left(-\frac{1}{216}\right)=2.\left(-216\right)=-432\)

2.a.\(\frac{16}{2^n}=2\Rightarrow2^n=16:2=8=2^3\Rightarrow n=3\)

b.\(\frac{\left(-3\right)^n}{81}=-27\Rightarrow\left(-3\right)^n=-27.81=-2187=\left(-3\right)^7\Rightarrow n=7\)

c. \(8^n:2^n=4\Rightarrow\left(8:2\right)^n=4\Rightarrow4^n=4^1\Rightarrow n=1\)

16 tháng 11 2017

Bài đầu đơn giản rồi , tự tính nhé <3

Bài 2

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n.3^2-2^n.2^2+3^n-2^n\)

\(=\left(3^n.3^2+1\right)-\left(2^n.2^2+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)⋮10\)

Vậy.....

7 tháng 12 2016

B= 333300

C=328350

D=(n+1) /( n nhân 2)

E=(1/3 trừ 1/3^100):2

7 tháng 12 2016

1)=>3B=1.2.3+2.3.3+3.4.3+...+99.100.3

3B=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)

3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

3B=99.100.101

=>B=333300