Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(\frac{3}{7}+\frac{1}{2}\right)^2=\left(\frac{6}{14}+\frac{7}{14}\right)^2=\left(\frac{13}{14}\right)^2=\frac{169}{196}\)
b, \(\left(\frac{3}{4}-\frac{5}{6}\right)^2=\left(\frac{9}{12}-\frac{10}{12}\right)^2=\left(-\frac{1}{12}\right)^2=\frac{1}{144}\)
c, \(\frac{5^4.20^4}{25^5.4^5}=\frac{\left(5.20\right)^4}{\left(25.4\right)^5}=\frac{100^4}{100^5}=\frac{100^4}{100^4.100}=\frac{1}{100}\)
d, \(\left(\frac{10}{3}\right)^5.\left(-\frac{6}{5}\right)^4=\left(\frac{10}{3}\right)^4.\frac{10}{3}.\left(-\frac{6}{5}\right)^4=\left(\frac{10}{3}.-\frac{6}{5}\right)^4.\frac{10}{3}=\left(-4\right)^4.\frac{10}{3}=256.\frac{10}{3}=853\frac{1}{3}\)
a, \(\frac{169}{196}\)
b, \(\frac{1}{144}\)
c, \(\frac{1}{100}\)
d, \(\frac{-2560}{3}\)
Bài 1:
a) Ta có: \(25\cdot\left(\frac{-1}{5}\right)^3+\frac{1}{5}-2\cdot\left(\frac{-1}{2}\right)^2-\frac{1}{2}\)
\(=25\cdot\frac{-1}{125}+\frac{1}{5}-2\cdot\frac{1}{4}-\frac{1}{2}\)
\(=-\frac{1}{5}+\frac{1}{5}-\frac{1}{2}-\frac{1}{2}\)
\(=\frac{-2}{2}=-1\)
b) Ta có: \(35\frac{1}{6}:\left(\frac{-4}{5}\right)-46\frac{1}{6}:\left(\frac{-4}{5}\right)\)
\(=\frac{211}{6}\cdot\frac{-5}{4}-\frac{277}{6}\cdot\frac{-5}{4}\)
\(=\frac{-5}{4}\cdot\left(\frac{211}{6}-\frac{277}{6}\right)\)
\(=\frac{-5}{4}\cdot\left(-11\right)=\frac{55}{4}\)
c) Ta có: \(\left(\frac{-3}{4}+\frac{2}{5}\right):\frac{3}{7}+\left(\frac{3}{5}+\frac{-1}{4}\right):\frac{3}{7}\)
\(=\frac{-7}{20}\cdot\frac{7}{3}+\frac{7}{20}\cdot\frac{7}{3}\)
\(=\frac{7}{3}\cdot\left(-\frac{7}{20}+\frac{7}{20}\right)=\frac{7}{3}\cdot0=0\)
d) Ta có: \(\frac{7}{8}:\left(\frac{2}{9}-\frac{1}{18}\right)+\frac{7}{8}\cdot\left(\frac{1}{36}-\frac{5}{12}\right)\)
\(=\frac{7}{8}\cdot6+\frac{7}{8}\cdot\frac{-7}{18}\)
\(=\frac{7}{8}\cdot\left(6+\frac{-7}{18}\right)\)
\(=\frac{7}{8}\cdot\frac{101}{18}=\frac{707}{144}\)
e) Ta có: \(\frac{1}{6}+\frac{5}{6}\cdot\frac{3}{2}-\frac{3}{2}+1\)
\(=\frac{1}{6}+\frac{15}{12}-\frac{3}{2}+1\)
\(=\frac{2}{12}+\frac{15}{12}-\frac{18}{12}+\frac{12}{12}\)
\(=\frac{11}{12}\)
f) Ta có: \(\left(-0,75-\frac{1}{4}\right):\left(-5\right)+\frac{1}{15}-\left(-\frac{1}{5}\right):\left(-3\right)\)
\(=\left(-1\right):\left(-5\right)+\frac{1}{15}-\frac{1}{15}\)
\(=\frac{1}{5}\)
Bài làm
\(a,\left(\frac{3}{7}+\frac{1}{2}\right)^2\)
\(=\left(\frac{3}{7}\right)^2+\left(\frac{1}{2}\right)^2\)
\(=\frac{9}{49}+\frac{1}{4}\)
\(=\frac{36}{196}+\frac{49}{196}\)
\(=\frac{85}{196}\)
\(b,\left(\frac{3}{4}-\frac{5}{6}\right)^2\)
\(=\left(-\frac{1}{12}\right)^2\)
\(=\frac{1}{144}\)
\(c,\frac{5^4.20^4}{25^5.4^5}\)
\(=\frac{5^4.\left(5.4\right)^4}{\left(5.5\right)^5.4^5}\)
\(=\frac{5^4.5^4.4^4}{5^5.5^5.4^5}\)
\(=\frac{1}{5.5.4}\)
\(=\frac{1}{100}\)
~ Check đúng cho minh nha. ~
# Học tốt #
\(a,\left(\frac{3}{7}+\frac{1}{2}\right)^2\)
\(< =>\left(\frac{6}{14}+\frac{7}{14}\right)^2\)
\(< =>\left(\frac{13}{14}\right)^2\)
\(< =>\frac{169}{196}\)
\(b,\left(\frac{3}{4}-\frac{5}{6}\right)^2\)
\(< =>\left(\frac{9}{12}-\frac{10}{12}\right)^2\)
\(< =>\left(\frac{-1}{12}\right)^2\)
\(< =>\frac{-1}{144}\)
\(c,\frac{5^4\cdot20^4}{25^5\cdot4^5}\)
\(< =>\frac{25^2\cdot\left(4\right)^4\cdot\left(5\right)^4}{25^5\cdot4^5}\)
\(< =>\frac{1\cdot1\cdot\left(5\right)^4}{25^3\cdot4}\)
\(< =>\frac{1\cdot25^2}{25^3\cdot4}\)
\(< =>\frac{1}{25\cdot4}\)
\(< =>\frac{1}{100}\)
a) \(\left(\frac{3}{7}+\frac{1}{2}\right)^2=\left(\frac{6}{14}+\frac{7}{14}\right)^2=\left(\frac{13}{14}\right)^2=\frac{169}{196}\)
b) \(\left(\frac{3}{4}-\frac{5}{6}\right)^2=\left(\frac{9}{12}-\frac{10}{12}\right)^2=\left(-\frac{1}{2}\right)^2=\frac{1}{4}\)
d) \(\left(-\frac{10}{3}\right)^5.\left(-\frac{6}{5}\right)^4=-\frac{2560}{3}\)
e) \(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(\frac{4}{5}-\frac{3}{4}\right)^2=\frac{17}{12}.\left(\frac{1}{20}\right)^2=\frac{17}{12}.\frac{1}{400}=\frac{17}{4800}\)
f) \(2:\left(\frac{1}{2}-\frac{2}{3}\right)^3=2:\left(-\frac{1}{6}\right)^3=2:-\frac{1}{216}=-432\)
Camon.!!