Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(4^3.5^3=\left(4.5\right)^3=20^3=8000\)
b, \(6^3.5^3=\left(6.5\right)^3=30^3=27000\)
c, \(8^2.5^2=\left(8.5\right)^2=40^2=1600\)
d, \(125^3.8^3=\left(125.8\right)^3=1000^3\)
e, \(5^2.6^2.3^2=\left(5.6.3\right)^2=90^2\)
a)\(\left(\dfrac{1}{2}\right)^n=\dfrac{1}{32}\)
=>\(\left(\dfrac{1}{2}\right)^n=\left(\dfrac{1}{2}\right)^5\)
=>n=5
b)\(\left(\dfrac{343}{125}\right)=\left(\dfrac{7}{5}\right)^n\)
=>\(\left(\dfrac{7}{5}\right)^3=\left(\dfrac{7}{5}\right)^n\)
=>n=3
c)\(\dfrac{16}{2^n}=2\)
=>2n=\(\dfrac{16}{2}\)
=>2n=8
=>2n=23
=>n=3
d)\(\dfrac{\left(-3\right)^n}{81}=-27\)
=>(-3)n=-27.81
=>(-3)n=-2187
=>(-3)n=(-3)7
=>n=7
e)8n:2n=4
=>(23)n:2n=4
=>23n:2n=4
=>23n-n=4
=>22n=4
=>22n=22
=>2n=2
=>n=1
f)32.3n=35
=>3n=35:32
=>3n=35-2
=>3n=33
=>n=3
g) (22:4).2n=4
=>1.2n=22
=>n=2
h)3-2.34.3n=37
=>\(\left(\dfrac{1}{3}\right)^2\).34.3n=37
=>32.3n=37
=>32+n=37
=>2+n=7
=>n=5
a) 27x : 3x = 9
(27 : 3)x = 9
9x = 91
x = 1
b) 25 : 5x =5
5x = 25 : 5
5x = 51
x = 1
c) 2 : (x + 2)2 = \(\dfrac{1}{18}\)
(x + 2)2 = 2 : \(\dfrac{1}{18}\)
(x + 2)2 = 36
\(\Rightarrow\left[{}\begin{matrix}x+2=6\\x+2=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)
d) (5x - 1)2 = \(\dfrac{36}{49}\)
(5x - 1)2 = \(\left(\dfrac{6}{7}\right)^2\)
Bạn làm tiếp nha, mình có việc bận :v
\(\left(\frac{1}{2}\right)^5\times x=\left(\frac{1}{2}\right)^7\)
\(x=\left(\frac{1}{2}\right)^7\div\left(\frac{1}{2}\right)^5\)
\(x=\left(\frac{1}{2}\right)^{7-5}=\left(\frac{1}{2}\right)^2=\frac{1}{4}\) .
\(\left(\frac{3}{7}\right)^2\times x=\left(\frac{9}{21}\right)^2\)
\(\left(\frac{3}{7}\right)^2\times x=\left(\frac{3}{7}\right)^4\)
\(x=\left(\frac{3}{7}\right)^4\div\left(\frac{3}{7}\right)^2\)
\(x=\left(\frac{3}{7}\right)^{4-2}=\left(\frac{3}{7}\right)^2=\frac{9}{49}\)
\(2^x=2\Rightarrow x=1\)
\(3^x=3^4\Rightarrow x=4\)
\(7^x=7^7\Rightarrow x=7\)
\(\left(-3\right)^x=\left(-3\right)^5\Rightarrow x=5\)
\(\left(-5\right)^x=\left(-5\right)^4\Rightarrow x=4\)
\(2^x=4\Leftrightarrow2^x=2^2\Rightarrow x=2\)
\(2^x=8\Leftrightarrow2^x=2^3\Rightarrow x=3\)
\(2^x=16\Leftrightarrow2^x=2^4\Rightarrow x=4\)
\(3^{x+1}=3^2\Leftrightarrow x+1=2\Leftrightarrow x=2-1\Rightarrow x=1\)
\(5^{x-1}=5\Leftrightarrow x-1=1\Leftrightarrow x=1+1\Rightarrow x=2\)
\(6^{x+4}=6^{10}\Leftrightarrow x+4=10\Leftrightarrow x=10-4\Rightarrow x=6\)
\(5^{2x-7}=5^{11}\Leftrightarrow2x-7=11\Leftrightarrow2x=11+7\Leftrightarrow2x=18\Leftrightarrow x=18\div2\Rightarrow x=9\)
\(\left(-2\right)^{4x+2}=64\)
\(2^{-4x+2}=2^6\Leftrightarrow-4x+2=6\Leftrightarrow-4x=6-2\Leftrightarrow-4x=4\Leftrightarrow x=4\div\left(-4\right)\Rightarrow x=-1\)
\(\left(\frac{1}{2}\right)^x=\left(\frac{1}{2}\right)^5\Rightarrow x=5\)
\(\left(\frac{5}{6}\right)^{2x}=\left(\frac{5}{6}\right)^5\Rightarrow2x=5\Rightarrow x=\frac{5}{2}\)
\(\left(\frac{3}{4}\right)^{2x-1}=\left(\frac{3}{4}\right)^{5x-4}\Rightarrow2x-1=5x-4\)
\(2x-5x=-4+1\)
\(-3x=-3\Rightarrow x=1\)
\(\left(\frac{-1}{10}\right)^x=\frac{1}{100}\)
\(\left(\frac{1}{10}\right)^{-x}=\left(\frac{1}{10}\right)^2\Rightarrow-x=2\Rightarrow x=-2\)
\(\left(\frac{-3}{2}\right)^x=\frac{9}{4}\)
\(\left(\frac{3}{2}\right)^{-x}=\left(\frac{3}{2}\right)^2\Rightarrow-x=2\Rightarrow x=-2\)
\(\left(\frac{-3}{5}\right)^{2x}=\frac{9}{25}\)
\(\left(\frac{3}{5}\right)^{-2x}=\left(\frac{3}{5}\right)^2\Rightarrow-2x=2\Rightarrow x=-1\)
\(\left(\frac{-2}{3}\right)^x=\frac{-8}{27}\)
\(\left(\frac{-2}{3}\right)^x=\left(\frac{-2}{3}\right)^3\Rightarrow x=3\).
hehe. đánh tới què tay, hoa mắt lun r nekkk!!
a)\(VT=\left(-\dfrac{1}{8}\right)^{100}=\dfrac{1}{8^{100}}=\dfrac{1}{\left(2^3\right)^{100}}=\dfrac{1}{2^{300}}\)
\(VP=\left(-\dfrac{1}{4}\right)^{200}=\dfrac{1}{\left(2^2\right)^{200}}=\dfrac{1}{2^{400}}\)
\(\Rightarrow VT>VP\)
b) \(VT=4^{100}=\left(2^2\right)^{100}=2^{200}< 2^{202}=VP\)
c) \(VT=5^{2000}=\left(5^2\right)^{1000}=25^{1000}>10^{1000}=VP\)
d) \(VT=31^5< 32^5=\left(2^5\right)^5=2^{25}\)
\(VP=17^7>16^7=\left(2^4\right)^7=2^{28}\)
\(VP>VT\)
1. Tìm n, biết:
a) \(\dfrac{-32}{\left(-2\right)^n}=4\)
\(\Rightarrow\dfrac{\left(-2\right)^5}{\left(-2\right)^n}=\left(-2\right)^2\)
\(\Rightarrow\left(-2\right)^n.\left(-2\right)^2=\left(-2\right)^5\)
(-2)n + 2 = (-2)5
n + 2 = 5
n = 5 - 2
n = 3.
b) \(\dfrac{8}{2^n}=2\)
\(\Rightarrow\dfrac{2^3}{2^n}=2\)
\(\Rightarrow\) 2n . 2 = 23
n + 1 = 3
n = 3 - 1
n = 2.
c) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{2n-1}=\left(\dfrac{1}{2}\right)^3\)
2n - 1 = 3
2n = 3 + 1
2n = 4
n = 4 : 2
n = 2.
2. Tính:
a) \(\left(\dfrac{1}{2}\right)^3.\left(\dfrac{1}{4}\right)^2\)
\(=\left(\dfrac{1}{2}\right)^3.\left[\left(\dfrac{1}{2}\right)^2\right]^2\)
\(=\left(\dfrac{1}{2}\right)^3.\left(\dfrac{1}{2}\right)^4\)
\(=\left(\dfrac{1}{2}\right)^7\)
\(=\dfrac{1}{128}\)
b) 273 : 93
= (33)3 : (32)3
= 39 : 36
= 33
= 27
c) 1252 : 253
= (53)2 : (52)3
= 56 : 56
= 1
d) \(\dfrac{27^2.8^5}{6^6.32^3}\)
\(=\dfrac{\left(3^3\right)^2.\left(2^3\right)^5}{6^6.\left(2^5\right)^3}\)
\(=\dfrac{3^6.2^{15}}{6^6.2^{15}}\)
\(=\dfrac{3^6}{6^6}\)
\(=\dfrac{1}{64}.\)
B2 :
b) 27\(^3\): 9\(^3\)= (27:9)\(^3\)= 3\(^3\)
c) 125\(^2\): 25\(^3\)= 15625 : 15625 = 1
a,=\(\frac{9}{25}+\frac{4}{25}+\frac{1}{25}\)
=\(\frac{14}{25}\)
bn ghi rõ đâu bài ra chứ mk ko bt câu nào là GTNN câu nào là GTLN đâu
a) \(\left[\left(-2,7\right)^4\right]^5-\left[\left(-2,7\right)^2\right]^{20}\)
\(=\left(-2,7\right)^{20}-\left(-2,7\right)^{20}\)
\(=0\)
b) \(\left(-0,5\right)^5:\left(-0,5\right)^3-\left(\dfrac{17}{2}\right)^7:\left(\dfrac{17}{2}\right)^6\)
\(=\left(-0,5\right)^2-\dfrac{17}{2}\)
\(=0,25-\dfrac{17}{2}\)
\(=-8,25\)
c) \(\left(8^{14}:4^{12}\right):\left(16^6:8^2\right)\)
\(=8^{14}:4^{12}:16^6\cdot8^2\)
\(=2^{48}:2^{24}:2^{24}\)
\(=0\)
Cái cuối bằng 1 nhé!