\(\frac{19}{x+y}+\frac{19}{y+z}+\frac{19}{z+x}=\frac{7x}{y+z}+\frac{7y}{x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2020

\(\frac{19}{x+y}+\frac{19}{y+z}+\frac{19}{z+x}=\frac{133}{10}\)

\(\Rightarrow19\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{133}{10}\)

\(\Rightarrow\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{7}{10}\)

\(\frac{7x}{y+z}+\frac{7y}{z+x}+\frac{7z}{x+y}=\frac{133}{10}\)

\(\Rightarrow7\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=\frac{133}{10}\)

\(\Rightarrow\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=\frac{19}{10}\)

\(\Rightarrow\left(\frac{x}{y+z}+1+\frac{y}{z+x}+1+\frac{z}{x+y}+1\right)=\frac{19}{10}+3\)

\(\Rightarrow\left(\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}\right)=\frac{49}{10}\)

\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)=\frac{49}{10}\)

\(\Rightarrow\left(x+y+z\right).\frac{7}{10}=\frac{49}{10}\)

\(\Rightarrow x+y+z=7\)

Vậy x + y + z = 7

Câu 3: 

a: \(G=\dfrac{a^2}{b\left(a+b\right)}-\dfrac{b^2}{a\left(a-b\right)}+\dfrac{-\left(a^2+b^2\right)}{ab}\)

\(=\dfrac{a^3\left(a-b\right)-b^3\left(a+b\right)-\left(a^2+b^2\right)\left(a^2-b^2\right)}{ab\left(a-b\right)\left(a+b\right)}\)

\(=\dfrac{a^4-a^3b-ab^3-b^4-a^4+b^4}{ab\left(a-b\right)\left(a+b\right)}\)

\(=\dfrac{-ab\left(a^2+b^2\right)}{ab\left(a-b\right)\left(a+b\right)}=\dfrac{-a^2-b^2}{a^2-b^2}\)

b: \(\dfrac{a}{b}=\dfrac{a+1}{b+5}\)

nên ab+5a=ab+b

=>5a=b

\(G=\dfrac{-a^2-\left(5a\right)^2}{a^2-\left(5a\right)^2}=\dfrac{-a^2-25a^2}{a^2-25a^2}=\dfrac{-26}{-24}=\dfrac{13}{12}\)

#)Giải :

a) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

\(\left\{{}\begin{matrix}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=20\\y=12\\z=42\end{matrix}\right.\)

b) Ta có : \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)

\(7y=5z\Rightarrow\frac{y}{7}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\left\{{}\begin{matrix}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=20\\y=30\\z=42\end{matrix}\right.\)

c) Ta có : \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)

\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

\(\left\{{}\begin{matrix}\frac{x}{9}=3\\\frac{y}{12}=3\\\frac{z}{20}=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=27\\y=36\\z=60\end{matrix}\right.\)

d) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{12x}{18}=\frac{12y}{6}=\frac{12z}{15}=\frac{12x+12y+12z}{18+16+5}=\frac{12\left(x+y+z\right)}{18+16+15}=\frac{12.49}{49}=12\)

\(\left\{{}\begin{matrix}\frac{12x}{18}=12\\\frac{12y}{16}=2\\\frac{12z}{15}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}12x=216\\12y=192\\12z=180\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=15\end{matrix}\right.\)

21 tháng 6 2019

Áp dụng tính chất của dãy tỉ số bằng nhau:

a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)(vì \(5x+y-z=28\))

\(x=20;y=12;z=42\)

b) \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)(vì \(x-y+z=32\))

\(x=20;y=30;z=42\)

c) \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)

⇒ x= -18; y= -24; z= -30

d) \(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{49}{49}=1\)

⇒ x=18; y=16; z=15

4 tháng 5 2020

Bài 1 quan trong là đoán dấu đẳng thức.

1/  Có: \(36=\left(3+2+1\right)\left(a^2+b^2+c^2\right)\ge\left(\sqrt{3}a+\sqrt{2}b+c\right)^2\)

\(\therefore\sqrt{3}a+\sqrt{2}b+c\le6\)

\(\frac{1}{3}\left(\frac{a}{bc}+\frac{3b}{2ca}\right)+\frac{3}{2}\left(\frac{b}{ca}+\frac{2c}{ab}\right)+2\left(\frac{c}{ab}+\frac{a}{3bc}\right)\)

\(\ge\frac{\sqrt{6}}{3c}+\frac{3\sqrt{2}}{a}+\frac{4\sqrt{3}}{3b}\)

\(=\frac{\left(\frac{\sqrt{6}}{3}\right)}{c}+\frac{\left(3\sqrt{6}\right)}{\sqrt{3}a}+\frac{\left(\frac{4\sqrt{6}}{3}\right)}{\sqrt{2}b}\)

\(\ge\frac{\left(\sqrt{\frac{\sqrt{6}}{3}}+\sqrt{3\sqrt{6}}+\sqrt{\frac{4\sqrt{6}}{3}}\right)^2}{\sqrt{3}a+\sqrt{2}b+c}\ge2\sqrt{6}\)

Đẳng thức xảy ra khi \(a=\sqrt{3},b=\sqrt{2},c=1\)

5 tháng 5 2020

Hiếm hoi thấy anh tth làm bất ko dùng sos

10 tháng 9 2017

1) VT= \(\frac{1}{1+x+xy}+\frac{x}{x+xy+1}+\frac{xyz}{xyz+z+zx}\)

\(=\frac{1}{1+x+xy}+\frac{xy}{1+x+xy}+\frac{xyz}{z\left(x+xy+1\right)}\)

\(=\frac{1}{1+x+xy}+\frac{x}{1+x+xy}+\frac{xy}{1+x+xy}\)

\(=\frac{1+x+xy}{1+x+xy}=1\)

Bài 2 giả thiết trên tử làm mell gì có bình phương, nếu có thì tính làm gì nữa :D, kết quả là 2016(x+y+z)

13 tháng 9 2017

đề b2 sai

27 tháng 12 2016

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)=> (x+y+z)\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)=0

=> \(\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}+3=0\)

=> \(\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=-3\)

13 tháng 1 2017

Nhanh vậy ta:

chơi khác kiểu không trùng ai hết.

câu 1

\(P=\frac{1}{x^2}+\frac{1}{y^2}=\frac{y^2+x^2}{\left(xy\right)^2}=\frac{20}{\left(xy\right)^2}\)(1)

Ta lại có: 

\(\left(x-y\right)^2\ge0\Rightarrow x^2+y^2\ge2xy\Rightarrow xy\le\frac{20}{2}=10\)(2) Đẳng thức khi x=y

Từ (1) và (2) \(\Rightarrow P_{min}=\frac{20}{100}=\frac{1}{5}\) Khi x=y=\(\sqrt{10}\)

câu 2: Không cần đk (x+y+z)=1

\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\) (1) =>Dk \(\hept{\begin{cases}x+z\ne0\\y+z\ne0\\x+y\ne0\end{cases}\Rightarrow\left(x+y+z\right)\ne0}\)

Nhân hai vế (1) với (x+y+z khác 0)

\(\Leftrightarrow\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\left(x+y+z\right)=1.\left(x+y+z\right)\)

\(\Leftrightarrow\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(x+y+z\right)=\left(x+y+z\right)\)

\(\Rightarrow\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)=0\)

13 tháng 1 2017

Câu 1:

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có:

\(P=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{4}{x^2+y^2}=\frac{4}{20}=\frac{1}{5}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x,y>0\\x^2+y^2=20\\x=y\end{cases}}\Rightarrow x=y=\sqrt{10}\)

Vậy MinP=\(\frac{1}{5}\Leftrightarrow x=y=\sqrt{10}\)

Câu 2:

Từ \(x+y+z=1\Rightarrow\hept{\begin{cases}x=1-\left(y+z\right)\\y=1-\left(x+z\right)\\z=1-\left(x+y\right)\end{cases}}\).Thay vào ta có

\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=\frac{x\left[1-\left(y+z\right)\right]}{y+z}+\frac{y\left[1-\left(x+z\right)\right]}{x+z}+\frac{z\left[1-\left(x+y\right)\right]}{x+y}\)

\(=\frac{x-x\left(y+z\right)}{y+z}+\frac{y-y\left(x+z\right)}{x+z}+\frac{z-z\left(x+y\right)}{x+y}\)

\(=\frac{x}{y+z}-\frac{x\left(y+z\right)}{y+z}+\frac{y}{x+z}-\frac{y\left(x+z\right)}{x+z}+\frac{z}{x+y}-\frac{z\left(x+y\right)}{x+y}\)

\(=\frac{x}{y+z}-x+\frac{y}{x+z}-y+\frac{z}{x+y}-z\)

\(=\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)-\left(x+y+z\right)=1-1=0\)

31 tháng 7 2016

ầy bạn xem lại khúc sao chữ và nhé

31 tháng 7 2016

mik biết là thiếu đề nhưng mik thấy thày mik ghi thế giờ mới biết