Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 12 + 22 + 32 + ... + 142 + 152 = 1240
102(12 + 22 + 32 + ... + 142 + 152) = 1240.102
102 + 202 + 302 + ... + 1402 + 1502 = 124000 = S
Vậy S = 124000
\(a,=\left(\frac{15}{12}-\frac{3}{12}\right)+\left(\frac{5}{13}-\frac{18}{13}\right)\)
\(=1+-1\)
\(=0\)
a)\(\frac{7}{12}.\frac{6}{11}+\frac{7}{12}.\frac{5}{11}-2\frac{7}{12}\)
\(=\frac{7}{12}.\left(\frac{6}{11}+\frac{5}{11}\right)-\frac{31}{12}\)
\(=\frac{7}{12}-\frac{31}{12}\)
\(=-2\)
b)\(\frac{-5}{9}.\frac{-6}{13}+\frac{5}{-9}.\frac{-5}{13}-\frac{5}{9}\)
\(=\frac{5}{9}.\left(\frac{6}{13}+\frac{5}{13}-1\right)\)
\(=\frac{5}{9}.\left(\frac{11}{13}-\frac{13}{13}\right)\)
\(=\frac{5}{9}.\frac{-2}{13}\)
\(=-\frac{10}{117}\)
c)\(0,8.\frac{-15}{14}-\frac{4}{5}.\frac{13}{14}-1\frac{2}{5}\)
\(=\frac{4}{5}.\frac{-15}{14}-\frac{4}{5}.\frac{13}{14}-\frac{7}{5}\)
\(=\frac{4}{5}.\left(-\frac{15}{14}-\frac{13}{14}\right)-\frac{7}{5}\)
\(=\frac{4}{5}.\left(-2\right)-\frac{7}{5}\)
\(=\frac{-8}{5}-\frac{7}{5}\)
\(=-3\)
d)\(-75\%.\frac{6}{7}+5\%.\frac{6}{7}+\frac{7}{10}.1\frac{1}{7}\)
\(=\frac{-15}{20}.\frac{6}{7}+\frac{1}{20}.\frac{6}{7}+\frac{7}{10}.\frac{8}{7}\)
\(=\frac{6}{7}.\left(\frac{-15}{20}+\frac{1}{20}\right)+\frac{4}{5}\)
\(=\frac{6}{7}.\frac{-7}{10}+\frac{4}{5}\)
\(=-\frac{3}{5}+\frac{4}{5}\)
\(=\frac{1}{5}\)
Linz
a, \(\left(x-1\right)^5=-243\)
=> \(\left(x-1\right)^5=\left(-3\right)^5\)
=> x-1= -3
=> x= -2
b, \(\dfrac{x+2}{11}+\dfrac{2+x}{12}+\dfrac{x+2}{13}=\dfrac{2+x}{14}+\dfrac{x+2}{15}\)
=> \(\dfrac{x+2}{11}+\dfrac{2+x}{12}+\dfrac{x+2}{13}-\dfrac{2+x}{14}+\dfrac{x+2}{15}=0\)
=>\(\dfrac{x+2+2+x+x+2-2+x+x+2}{11+12+13-14+15}\)
=> \(\dfrac{x+2}{37}=0\)
=> x+2= 0
=> x=-2
a) \(-312+13×\left(\:x-1\right)=\:-113\div213\)
\(-312 +13×\left(x-1\right)=-\frac{113}{213}\)
\(13×\:\left(x-1\right)=-\frac{113}{213}+312\)
\(13×\left(x-1\right)=311\)
\(x-1=311\div13\)
\(x-1=\frac{311}{13}\)
\(x=\frac{311}{13}+1\)
\(x=\frac{324}{13}\)
Vậy, \(x =\frac{324}{13}\)
Cbht
b) \(x-14=x-25\)
\(x-x =14-25\)
\(0= -11\)
=> x không tồn tại
Cbht
a, \(\left(x-1\right)^5=-243\)
\(\Leftrightarrow\left(x-1\right)^5=-3^5\)
\(\Leftrightarrow x-1=-3\Leftrightarrow x=-2\)
b,\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}=\dfrac{x+2}{14}+\dfrac{x+2}{15}\)
\(\dfrac{x+2}{11}+\dfrac{x+2}{12}+\dfrac{x+2}{13}-\dfrac{x+2}{14}-\dfrac{x+2}{15}=0\)
\(\Leftrightarrow\left(x+2\right).\left(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\right)=0\)
\(do\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\ne0\)
\(\Rightarrow x+2=0\Leftrightarrow x=-2\)
c, \(x-2\sqrt{x}=0\Leftrightarrow\sqrt{x^2}-2\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\\sqrt{x}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\sqrt{2}\end{matrix}\right.\)
Ta có:
\(S=10^2+20^2+30^2+....+140^2+150^2\)
\(=1^2.10^2+2^2.10^2+3^2.10^2+...+14^2.10^2+15^2.10^2\)
\(=10^2\left(1^2+2^2+3^2+...+14^2+15^2\right)\)
\(=100.1240\)
\(=124000\)
Vậy \(S=124000\)
Có 2A= 216-215-......-22
2A - A= 216 - 2.215 + 21
suy ra A= 2
A=2
k nha