Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) S=1+2+22+...+263
2S=2+22+23+...+264
2S-S=S=264-1
các câu khác tương tự
a) S=1 + 2 + 2^2 + 2^3 +...+ 2^63
2S=2 + 2^2 + 2^3 + 2^4 +...+ 2^64
S=2S-S=(2 + 2^2 + 2^3 + 6^4 +...+ 2^64)-(1 + 2 + 2^2 + 2^3 +...+ 2^63)
S=2 + 2^2 + 2^3 + 2^4 +...+ 2^64 - 1 - 2 - 2^2 - 2^3 -...- 2^63
S=2^64 - 1
\(A=1+2+2^2+...+2^{62}\)
\(\Rightarrow2A=2.\left(1+2+2^2+...+2^{62}\right)\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{63}\)
\(\Rightarrow2A-A=2+2^2+2^3+...+2^{63}-\left(1+2+2^2+...+2^{62}\right)\)
\(\Rightarrow A=2+2^2+2^3+...+2^{63}-1-2-2^2-...-2^{62}\)
\(\Rightarrow A=2^{63}-1\)
\(B=1+3+3^2+3^3+...+3^{20}\)
\(\Rightarrow3B=3+3^2+3^3+...+3^{21}\)
\(\Rightarrow3B-B=3+3^2+3^3+...+3^{21}-1-3-3^2-...3^{20}\)
\(\Rightarrow2B=3^{21}-1\)
\(\Rightarrow B=\frac{3^{21}-1}{2}\)
\(C=1+4+4^2+...+4^{49}\)
\(\Rightarrow4C=4+4^2+4^3+...+4^{50}\)
\(\Rightarrow4C-C=4+4^2+4^3+...+4^{50}-1-4-4^2-...-4^{49}\)
\(\Rightarrow3C=4^{50}-1\)
\(\Rightarrow C=\frac{4^{50}-1}{3}\)
S1 = \(1+2+2^2+2^3+...+2^{62}+2^{63}\)
2 . S1 = \(2+2^2+2^3+2^4+...+2^{63}+2^{64}\)
2.S1 - S1 =\(\left(2+2^2+2^3+2^4+...+2^{63}+2^{64}\right)-\left(1+2+2^2+2^3+...+2^{62}+2^{63}\right)\)
S1 = \(2^{64}-1\)
\(S=1+2+2^2+2^3+...+2^{62}+2^{63}\)
\(2S=2+2^2+2^3+2^4+...+2^{63}+2^{64}\)
\(2S-S=2^{64}-1\)
\(S=2^{64}-1\)
S = 1 + 2 + 22 + 23 + 24 + ... + 262 + 263
2S = 2 . ( 1 + 2 + 22 + 23 + 24 + ... + 262 + 263 )
2S = 2 + 22 + 23 + 24 + 25 + ... + 263 + 264
2S - S = 2 + 22 + 23 + 24 + 25 + ... + 263 + 264 - ( 1 + 2 + 22 + 23 + 24 + ... + 262 + 263 )
S = 264 - 1
Vậy S = 264 - 1
\(S=1+2+2^2+2^3+.....+2^{62}+2^{63}\)
\(2S=2+2^2+2^3+2^4+....+2^{63}+2^{64}\)
\(2S-S=2+2^2+2^3+2^4+.....+2^{63}+2^{64}-\left(1+2+2^2+2^3+.....+2^{62}+2^{63}\right)\)
\(S=2^{64}-1\)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
S=30+32+34+36+...+3200
6S=32+34+36+...+3202
6S-S=(32+34+36+...+3202)-(1+32+34+...+3200)
5S=1+(32-32)+(34-34)+...+(3200-3200)+3202
S=(3200+1):5\(\frac{ }{ }\)
S=1+2+22+...+262+263
2S=2+22+23+...+263+264
2S+1=1+2+22+...+263+264=S+264
2S-S=264-1
Vậy S=264-1
a, S=1+2+22+23+................+263
\(\Rightarrow\)2S=2+22+23+24+.................+264
\(\Rightarrow\)2S-S=(2+22+23+.................+264) - (1+2+22+...............+263)
\(\Rightarrow\)S=264-1
b,S=1+3+32+.................+320
\(\Rightarrow\)3S=3+32+33+...............+321
\(\Rightarrow\)3S-S=(3+32+33+................+321) - (1+3+32+.................+320)
\(\Rightarrow\)2S=321-1
\(\Rightarrow\)S=\(\frac{3^{21}-1}{2}\)
c,Tương tự:4S=4+42+43+...............+450
\(\Rightarrow\)4S-S=450-1
\(\Rightarrow S=\frac{4^{50}-1}{3}\)
S=1+2^2+2^3+.........+2^63
S=2^0+2^1+2^2+.....+2^63
2S=2x(20+21+22+...+263)
2S=21+22+23+24+......+264
2S-S=(21+22+23+24+..........+264)\(-\)(20+21+22+....+263)
1S=264\(-\)20
S=264\(-\)1
Các câu khác tương tự
câu b nhân S với 3
Câu c nhân S với 4
Cơ số bao nhiêu thì nhân với bấy nhiêu