Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{99.97}-\frac{1}{97.95}-\frac{1}{95.93}-\frac{1}{5.3}-\frac{1}{3.1}\)
\(=\frac{1}{2}.\left(\frac{2}{99.97}-\frac{2}{97.95}-\frac{2}{95.93}-\frac{2}{5.3}-\frac{2}{3.1}\right)\)
\(=\frac{1}{2}.\left(\frac{99-97}{99.97}-\frac{97-95}{97.95}-\frac{95-93}{95.93}-\frac{5-3}{5.3}-\frac{3-1}{3.1}\right)\)
\(=\frac{1}{2}.\left[\left(\frac{99}{99.97}-\frac{97}{99.97}\right)-\left(\frac{97}{97.95}-\frac{95}{97.95}\right)-\left(\frac{95}{95.93}-\frac{93}{95.93}\right)-\left(\frac{5}{5.3}-\frac{3}{5.3}\right)-\left(\frac{3}{3.1}-\frac{1}{3.1}\right)\right]\)
\(=\frac{1}{2}.\left[\left(\frac{1}{97}-\frac{1}{99}\right)-\left(\frac{1}{95}-\frac{1}{97}\right)-\left(\frac{1}{93}-\frac{1}{95}\right)-\left(\frac{1}{3}-\frac{1}{5}\right)-\left(\frac{1}{1}-\frac{1}{3}\right)\right]\)
\(=\frac{1}{2}.\left[\frac{1}{97}-\frac{1}{99}-\frac{1}{95}+\frac{1}{97}-\frac{1}{93}+\frac{1}{95}-\frac{1}{3}+\frac{1}{5}-\frac{1}{1}+\frac{1}{3}\right]\)
\(=\frac{1}{2}.\left[-\frac{1}{99}-\frac{1}{93}+\frac{1}{5}-\frac{1}{1}\right]\)
\(\frac{1}{99}-\frac{1}{99.97}-\frac{1}{97.95}-...-\frac{1}{5.3}-\frac{1}{3.1}\)
\(=\frac{1}{99}-\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{95.97}+\frac{1}{97.99}\right)\)
\(=\frac{1}{99}-\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{95}-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{1}{99}-\frac{1}{2}.\left(1-\frac{1}{99}\right)=\frac{1}{99}-\frac{1}{2}\cdot\frac{98}{99}=\frac{1}{99}-\frac{49}{99}=\frac{-48}{99}=\frac{-16}{33}\)
cảm on bạn két quả của mình cũng thế nhưng cách giải hơi khác bạn chút xíu
Tôi thấy bài này nó cứ sai sai
Ở chỗ \(\frac{1}{99.97}-\frac{1}{97.95}\)í
\(\frac{1}{97.95}>\frac{1}{99.97}\)mà ông Thám Tử THCS Nguyễn Hiếu CTV
violympic cho sai đề :
Đề đúng là tính : \(A=\frac{1}{99.97}-\frac{1}{97.95}-\frac{1}{95.53}-....-\frac{1}{5.3}-\frac{1}{3.1}\)
Làm theo đề đúng !! ok
Ta có : \(A=\frac{1}{99.97}-\left(\frac{1}{97.95}+\frac{1}{95.53}+....+\frac{1}{5.3}+\frac{1}{3.1}\right)\)
\(=\frac{1}{99.97}-\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{95}-\frac{1}{97}\right)\)
\(=\frac{1}{99.97}-\frac{1}{2}\left(1-\frac{1}{97}\right)=\frac{1}{99.97}-\frac{48}{97}=-\frac{4751}{9603}\)
\(=\dfrac{1}{99}-\left(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{95\cdot97}+\dfrac{1}{97\cdot99}\right)\\ =\dfrac{1}{99}-\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{95\cdot97}+\dfrac{2}{97\cdot99}\right)\\ =\dfrac{1}{99}-\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\\ =\dfrac{1}{99}-\dfrac{1}{2}\left(1-\dfrac{1}{99}\right)=\dfrac{1}{99}-\dfrac{1}{2}\cdot\dfrac{98}{99}\\ =\dfrac{1}{99}-\dfrac{49}{99}=-\dfrac{48}{99}=-\dfrac{16}{33}\)
\(\frac{1}{99\cdot97}-\frac{1}{97\cdot95}-...-\frac{1}{5\cdot3}-\frac{1}{3\cdot1}\)\(=\frac{1}{99\cdot97}-\left(\frac{1}{97\cdot95}+\frac{1}{95\cdot93}+...+\frac{1}{3\cdot1}\right)\)
\(=\frac{1}{99\cdot97}-2\left(\frac{1}{97}-\frac{1}{95}+\frac{1}{95}-\frac{1}{93}+...+\frac{1}{3}-1\right)\)\(=\frac{1}{99\cdot97}-2\left(\frac{1}{97}-1\right)=\frac{1}{9603}-2\cdot\left(-\frac{96}{97}\right)\)\(\frac{1}{9603}-\frac{-192}{97}\)phần còn lại tự làm
a, \(A=-\dfrac{1}{20}-\left(\dfrac{1}{20\cdot19}+\dfrac{1}{19\cdot18}+...+\dfrac{1}{2\cdot1}\right)\\ \Rightarrow A=-\dfrac{1}{20}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{19}-\dfrac{1}{20}\right)\\ \Rightarrow A=-\dfrac{1}{20}-1+\dfrac{1}{20}=-1\)
b, \(B=\dfrac{1}{99}-\dfrac{1}{99\cdot97}-\dfrac{1}{97\cdot95}-...-\dfrac{1}{3\cdot1}\\ \Rightarrow B=\dfrac{1}{99}-\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{97\cdot99}\right)\\ \Rightarrow B=\dfrac{1}{99}-\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\\ \Rightarrow B=\dfrac{1}{99}-\dfrac{1}{2}+\dfrac{1}{2\cdot99}=-\dfrac{16}{33}\)