Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: M=(x+y)^3 - 3x^2 + 3y^2 + 6xy -7x - 7y + 8
=(x+y)^3 - 3x^2 + 3y^2 + 3xy + 3xy - 7x - 7y + 8
=(x+y)^3 - 3x(x+y) + 3y(x+y) - 7(X+y) + 8
Thay x+y=-2 ta có:
M=(-2)^3 - 3*x*(-2) + 3*y*(-2) - 7*(-2)+8
= -8 - ((-2)*3*(x+y)) -14+8
= -8 - ((-2)*3*(-2)) -14+8
=-8+12-14+8
= 10
Vậy M=10
\(A=\left(2x\right)^2-2.2x.5+5^2-4x.x+4x.6\)
\(=4x^2-20x+25-4x^2+24x=4x+25\)
\(B=\left(7x-3y\right)^2-\left(7x-3y\right)\left(7x+3y\right)\)
\(=\left(7x-3y\right)\left(7x-3y-7x-3y\right)\)
\(=\left(7x-3y\right)\left(-6y\right)=18y^2-42xy\)
\(C=\left(3-2x\right)^2+\left(3+2x\right)^2\)
\(=9-2.3.2x+4x^2+9+2.3.2x+4x^2\)
\(=18+8x^2\)
\(D=\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+x\right)\left(y-z\right)\)
\(=\left(x-y+z+z-y\right)^2=x^2\)
2) Ta có:
\(B=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
\(=x^4+x^3y-2x^3+x^3y+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
\(=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left[x\left(x+y\right)-2x\right]+3\)
Do \(x+y-2=0\Rightarrow x+y=2\)
\(\Rightarrow B=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left[2x-2x\right]+3\)
\(=x^3.\left(x+y-2\right)+x^2y\left(x+y-2\right)-0+3\)
\(=0+0+3\)
\(=3\)
Vậy \(B=3\)
1) Ta có:
\(A=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
\(=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+y+x-1\)
\(=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+1\)
\(=0+0+0+1\)
\(=1\)
Vậy \(A=1\)
a) A=2x^2-1/3y
thay x=2 và y=9 vào biểu thức:
Ta có :2.2^2-1/3.9
=2.4-3
= 6-3=3
Vậy tại x =2 và y=9 giá trị của biểu thức bằng 3
\(3\left(x-1\right)=3\left(y-2\right);4\left(y-2\right)=3\left(z-3\right)\)
\(\Rightarrow\frac{x-1}{3}=\frac{y-2}{3};\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{x-1}{3}=\frac{y-2}{3}=\frac{z-3}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{3}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2.\left(x-1\right)+3.\left(y-2\right)-\left(z-3\right)}{2.3+3.3-4}\)
\(=\frac{2x-2+3y-6-z+3}{11}=\frac{\left(2x+3y-z\right)+\left(-2-6+3\right)}{11}\)
\(=\frac{-250-5}{11}=\frac{-255}{11}\)
Đề có sai hông sao số lẽ quá
a: \(\Leftrightarrow A=-\left(x^2-xy^2+2xz-3y^2\right)=-x^2+xy^2-2xz+3y^2\)
b: Vì tổng của B với \(4x^2y+5y^2-xz+z^2\) là một đa thức không chứa biến x nên \(B=-4x^2y+xz\)