\(\frac{\text{|}x-2016\text{|}+2017}{\text{|}x-2016\text{|}+2018}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2018

ta có \(\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}\)

\(=1-\frac{1}{\left|x-2016\right|+2018}\)

để \(1-\frac{1}{\left|x-2016\right|+2018}\)nhỏ nhất thì \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất 

để \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất thì \(\left|x-2016\right|+2018\)nhỏ nhất

ta lại có \(\left|x-2016\right|+2018\ge2018\)với mọi x nên để đạt giá trị nhỏ nhất thì 

\(\left|x-2016\right|+2018=2018\)

\(\Leftrightarrow\left|x-2016\right|=0\Leftrightarrow x=2016\)

với x=2016 thì \(\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}\)đạt giá tri nhỏ nhất bằng \(\frac{2017}{2018}\)

chúc bạn học tốt

28 tháng 3 2018

Giả sử x=2016

Ta có:

2016-2016=0

Như vậy (x-2016)+2017=2017

              ((x-2016)+2018=2018

Vậy giá trị nhỏ nhất là

2017/2018

Em không chắc đúng vì em mới lớp 5

31 tháng 3 2017

lên google dịch gõ lõm sẽ thấy điều bất ngờ xảy ra

31 tháng 3 2017

giải dùm đi pham thanh binh

10 tháng 8 2016

ta thấy trị tuyệt đối của x-2016 lớn hơn hoặc bằng 0 với mọi x. Vậy phân thức nhỏ nhất bằng 2017/2018 

24 tháng 2 2020

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2019}{y}=\frac{x+y-2020}{z}=\frac{y+z+1+x+z+2019+x+y-2020}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow2=\frac{1}{x+y+z}\)\(\Rightarrow x+y+z=\frac{1}{2}\)

Ta có: 

​+) \(\frac{y+z+1}{x}=2\)\(\Rightarrow y+z+1=2x\)\(\Rightarrow x+y+z+1=3x\)\(\Rightarrow\frac{1}{2}+1=3x\)\(\Rightarrow3x=\frac{3}{2}\)\(\Rightarrow x=\frac{1}{2}\)

+) \(\frac{x+z+2019}{y}=2\)\(\Rightarrow x+z+2019=2y\)\(\Rightarrow x+y+z+2019=3y\)\(\Rightarrow\frac{1}{2}+2019=3y\)\(\Rightarrow3y=\frac{4039}{2}\)\(\Rightarrow y=\frac{4039}{6}\)

+) \(\frac{x+y-2020}{z}=2\)\(\Rightarrow x+y-2020=2z\)\(\Rightarrow x+y+z-2020=3z\)\(\Rightarrow\frac{1}{2}-2020=3z\)\(\Rightarrow3z=\frac{-4039}{2}\)\(\Rightarrow z=\frac{-4039}{6}\)

Lại có: \(A=2016x+y^{2017}+z^{2017}=2016.\frac{1}{2}+\left(\frac{4039}{6}\right)^{2017}+\left(\frac{-4039}{6}\right)^{2017}=4032+\left(\frac{4039}{6}\right)^{2017}-\left(\frac{4039}{6}\right)^{2017}=4032\)

1 tháng 10 2018

\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}\)

\(A=\frac{\left|x-2016\right|+2018}{\left|x-2016\right|+2018}-\frac{1}{\left|x-2016\right|+2018}\)

\(A=1-\frac{1}{\left|x-2016\right|+2018}\ge1-\frac{1}{2018}=\frac{2017}{2018}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|x-2016\right|=0\)

\(\Leftrightarrow\)\(x=2016\)

Vậy GTNN của \(A\) là \(\frac{2017}{2018}\) khi \(x=2016\)

Chúc bạn học tốt ~ 

19 tháng 3 2019

Đề thi đó

24 tháng 1 2017

Đặt bẫy hả