Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2019}{y}=\frac{x+y-2020}{z}=\frac{y+z+1+x+z+2019+x+y-2020}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow2=\frac{1}{x+y+z}\)\(\Rightarrow x+y+z=\frac{1}{2}\)
Ta có:
+) \(\frac{y+z+1}{x}=2\)\(\Rightarrow y+z+1=2x\)\(\Rightarrow x+y+z+1=3x\)\(\Rightarrow\frac{1}{2}+1=3x\)\(\Rightarrow3x=\frac{3}{2}\)\(\Rightarrow x=\frac{1}{2}\)
+) \(\frac{x+z+2019}{y}=2\)\(\Rightarrow x+z+2019=2y\)\(\Rightarrow x+y+z+2019=3y\)\(\Rightarrow\frac{1}{2}+2019=3y\)\(\Rightarrow3y=\frac{4039}{2}\)\(\Rightarrow y=\frac{4039}{6}\)
+) \(\frac{x+y-2020}{z}=2\)\(\Rightarrow x+y-2020=2z\)\(\Rightarrow x+y+z-2020=3z\)\(\Rightarrow\frac{1}{2}-2020=3z\)\(\Rightarrow3z=\frac{-4039}{2}\)\(\Rightarrow z=\frac{-4039}{6}\)
Lại có: \(A=2016x+y^{2017}+z^{2017}=2016.\frac{1}{2}+\left(\frac{4039}{6}\right)^{2017}+\left(\frac{-4039}{6}\right)^{2017}=4032+\left(\frac{4039}{6}\right)^{2017}-\left(\frac{4039}{6}\right)^{2017}=4032\)
\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}\)
\(A=\frac{\left|x-2016\right|+2018}{\left|x-2016\right|+2018}-\frac{1}{\left|x-2016\right|+2018}\)
\(A=1-\frac{1}{\left|x-2016\right|+2018}\ge1-\frac{1}{2018}=\frac{2017}{2018}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|x-2016\right|=0\)
\(\Leftrightarrow\)\(x=2016\)
Vậy GTNN của \(A\) là \(\frac{2017}{2018}\) khi \(x=2016\)
Chúc bạn học tốt ~
ta có \(\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}\)
\(=1-\frac{1}{\left|x-2016\right|+2018}\)
để \(1-\frac{1}{\left|x-2016\right|+2018}\)nhỏ nhất thì \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất
để \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất thì \(\left|x-2016\right|+2018\)nhỏ nhất
ta lại có \(\left|x-2016\right|+2018\ge2018\)với mọi x nên để đạt giá trị nhỏ nhất thì
\(\left|x-2016\right|+2018=2018\)
\(\Leftrightarrow\left|x-2016\right|=0\Leftrightarrow x=2016\)
với x=2016 thì \(\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}\)đạt giá tri nhỏ nhất bằng \(\frac{2017}{2018}\)
chúc bạn học tốt
Giả sử x=2016
Ta có:
2016-2016=0
Như vậy (x-2016)+2017=2017
((x-2016)+2018=2018
Vậy giá trị nhỏ nhất là
2017/2018
Em không chắc đúng vì em mới lớp 5