\(Q=x^3+ax+b\)  biết \(x=\sqrt[3]{\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2016

Ta có: \(x=\sqrt[3]{\frac{-b}{2}+\sqrt{\frac{b^2}{4}+\frac{a^3}{27}}}+\sqrt[3]{\frac{-b}{2}-\sqrt{\frac{b^2}{4}+\frac{a^3}{27}}}\)

=> \(x^3=\frac{-b}{2}+\sqrt{\frac{b^2}{4}+\frac{a^3}{27}}+\frac{-b}{2}-\sqrt{\frac{b^2}{4}+\frac{a^3}{27}}+3\cdot\sqrt[3]{\left(\frac{-b}{2}+\sqrt{\frac{b^2}{4}+\frac{a^3}{27}}\right)\left(\frac{-b}{2}-\sqrt{\frac{b^2}{4}+\frac{a^3}{27}}\right)}\cdot x.\)

    =  \(-b+\sqrt[3]{\frac{b^2}{4}-\left(\frac{b^2}{4}+\frac{a^3}{27}\right)}\cdot x\)

=\(-b+\sqrt[3]{\frac{a^3}{27}}\cdot x=-b+\frac{a}{27}\cdot x\)

=> \(x^3+b=\frac{a}{27}\cdot x\)

Vậy  \(x^3+ax+b=\frac{a}{27}\cdot x+ax=\frac{28a}{27}\cdot x\)

5 tháng 7 2015

<=> x= -b/2 + -b/2 + 3x.\(\sqrt[3]{\left(\frac{-b}{2}+\sqrt{\frac{b^2}{4}+\frac{a^3}{27}}\right).\left(\frac{-b}{2}-\sqrt{\frac{b^2}{4}+\frac{a^3}{27}}\right)}\)
<=> x³ = -b + 3x.\(\sqrt[3]{\left(\frac{-b}{2}\right)^2-\frac{b^2}{4}-\frac{a^3}{27}}\)
<=> x³ = -b + 3x.\(\sqrt[3]{\frac{-a^3}{27}}\)
<=> x³ = -b + 3x\(\frac{-a}{3}\)
<=> x³ = -b - ax
=> Q = -b - ax + ax + b = 0

29 tháng 8 2018

Bài 1:

a, \(4\sqrt{3+2\sqrt{2}}-\sqrt{57+40\sqrt{2}}\)

\(=4\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(4\sqrt{2}+5\right)^2}\)

\(=4\left(\sqrt{2}+1\right)-4\sqrt{2}-5\)

\(=4\sqrt{2}+4-4\sqrt{2}-5=-1\)

b, \(B=\sqrt{1100}-7\sqrt{44}+2\sqrt{176}-\sqrt{1331}\)

\(=10\sqrt{11}-14\sqrt{11}+8\sqrt{11}-11\sqrt{11}=-7\sqrt{11}\)

c, \(C=\sqrt{\left(1-\sqrt{2002}\right)^2}.\sqrt{2003+2\sqrt{2002}}\)

\(=\left(1-\sqrt{2002}\right).\sqrt{\left(\sqrt{2002}+1\right)^2}\)

\(=\left(1-\sqrt{2002}\right).\left(\sqrt{2002}+1\right)=-2001\)

Câu d bạn kiểm tra lại đề bài nhé.

Bài 2:

\(A=\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{2}+2}+\frac{\sqrt{x}}{1-x}\)

a, ĐK: \(x\ge0,x\ne1\)

b, ĐK: \(x\ge0,x\ne1\)

 \(A=\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{2}+2}+\frac{\sqrt{x}}{1-x}\)

\(=\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{2}+2}-\frac{\sqrt{x}}{x-1}\)

\(=\frac{1}{2\left(\sqrt{x}-1\right)}-\frac{1}{2\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}}{x-1}\)

\(=\frac{2\sqrt{x}+2-2\sqrt{x}+2}{4\left(x-1\right)}-\frac{\sqrt{x}}{x-1}\)

\(=\frac{4-4\sqrt{x}}{4\left(x-1\right)}=\frac{4\left(1-\sqrt{x}\right)}{4\left(1-x\right)}=\frac{1-\sqrt{x}}{1-x}\)

Thay \(x=3\left(TM\right)\)vào A ta có: \(A=\frac{1-\sqrt{3}}{3-1}=\frac{1-\sqrt{3}}{2}\)

Vậy với \(x=3\)thì \(A=\frac{1-\sqrt{3}}{2}\)

c, \(\left|A\right|=\frac{1}{2}\Leftrightarrow\orbr{\begin{cases}A=\frac{1}{2}\\A=-\frac{1}{2}\end{cases}}\)

TH1: \(A=\frac{1}{2}\)\(\Leftrightarrow\frac{1-\sqrt{x}}{x-1}=\frac{1}{2}\Leftrightarrow2-2\sqrt{x}=x-1\)\(\Leftrightarrow x-1-2+2\sqrt{x}=0\)\(\Leftrightarrow x+2\sqrt{x}-3=0\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(TM\right)\\\sqrt{x}=-3\left(L\right)\end{cases}}}\)

TH2: \(A=-\frac{1}{2}\Leftrightarrow\frac{1-\sqrt{x}}{x-1}=-\frac{1}{2}\)\(\Leftrightarrow2-2\sqrt{x}=1-x\Leftrightarrow-x+1-2+2\sqrt{x}=0\)\(\Leftrightarrow-x-1+2\sqrt{x}=0\Leftrightarrow x-2\sqrt{x}+1=0\)\(\Leftrightarrow\left(\sqrt{x}+1\right)^2=0\Leftrightarrow\sqrt{x}=-1\left(L\right)\)

Vậy với \(x=1\)thì \(\left|A\right|=\frac{1}{2}\)

30 tháng 8 2018

Cám ơn bạn nhiều nha!!!

19 tháng 5 2021

a, Ta có : \(x=\sqrt{3+2\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}=4\)

Thay x = 4 => \(\sqrt{x}=2\) vào B ta được : 

\(B=\frac{2+5}{2-3}=-7\)

19 tháng 5 2021

b, Ta có : Với \(x\ge0;x\ne9\)

\(A=\frac{4}{\sqrt{x}+3}+\frac{2x-\sqrt{x}-13}{x-9}-\frac{\sqrt{x}}{\sqrt{x}-3}\)

\(=\frac{4\left(\sqrt{x}-3\right)+2x-\sqrt{x}-13-\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}\)

\(=\frac{4\sqrt{x}-12+2x-\sqrt{x}-13-x-3\sqrt{x}}{x-9}=\frac{x-25}{x-9}\)

Lại có \(P=\frac{A}{B}\Rightarrow P=\frac{\frac{x-25}{x-9}}{\frac{\sqrt{x}+5}{\sqrt{x}-3}}=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)

27 tháng 4 2019

\(a,A=\sqrt{27}+\frac{2}{\sqrt{3}-2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)

        \(=3\sqrt{3}+\frac{2\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\left(\sqrt{3}-1\right)\)

         \(=3\sqrt{3}+\frac{2\sqrt{3}+4}{3-4}-\sqrt{3}+1\)

        \(=3\sqrt{3}-2\sqrt{3}-4-\sqrt{3}+1\)

       \(=-3\)

\(B=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)

     \(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)

    \(=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

    \(=\frac{\sqrt{x}-1}{\sqrt{x}}\)

b, Ta có \(B< A\)

\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}}< -3\)

\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}}+3< 0\)

\(\Leftrightarrow\frac{\sqrt{x}-1+3\sqrt{x}}{\sqrt{x}}< 0\)

\(\Leftrightarrow\frac{4\sqrt{x}-1}{\sqrt{x}}< 0\)

\(\Leftrightarrow4\sqrt{x}-1< 0\left(Do\sqrt{x}>0\right)\)

\(\Leftrightarrow\sqrt{x}< \frac{1}{4}\)

\(\Leftrightarrow0< x< \frac{1}{2}\)(Kết hợp ĐKXĐ)

Vậy ...

6 tháng 9 2021

a, Ta có: \(x=4-2\sqrt{3}\)\(=3-2\sqrt{3}+1\)\(=\left(\sqrt{3}-1\right)^2\)

         \(\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-1\right)^2}\)\(=\sqrt{3}-1\)

Thay \(\sqrt{x}=\sqrt{3}-1\) vào biểu thức P ta có:

\(P=\frac{\sqrt{3}-1+1}{\sqrt{3}-1-4}\)\(=\frac{\sqrt{3}}{\sqrt{3}-5}\)\(=\frac{\sqrt{3}.\left(\sqrt{3}+5\right)}{\left(\sqrt{3}-5\right).\left(\sqrt{3}+5\right)}\)\(=\frac{3-5\sqrt{3}}{3-25}\)\(=\frac{5\sqrt{3}-3}{22}\)

Vậy \(P=\frac{5\sqrt{3}-3}{22}\)khi \(x=4-2\sqrt{3}\) 

b, \(E=\frac{1}{\sqrt{3}-1}-\frac{1}{\sqrt{3}+1}\)\(=\frac{\sqrt{3}+1}{\left(\sqrt{3}-1\right).\left(\sqrt{3}+1\right)}\)\(-\frac{\sqrt{3}-1}{\left(\sqrt{3}+1\right).\left(\sqrt{3}-1\right)}\)

       \(=\frac{\sqrt{3}+1-\sqrt{3}+1}{3-1}\)     \(=\frac{2}{2}=1\)

6 tháng 9 2021

a, Ta có : \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

Thay vào P ta được : \(P=\frac{\sqrt{3}-1+1}{\sqrt{3}-1-4}=\frac{\sqrt{3}}{\sqrt{3}-5}=\frac{\sqrt{3}\left(\sqrt{3}+5\right)}{-22}=-\frac{3+5\sqrt{3}}{22}\)

b, \(E=\frac{1}{\sqrt{3}-1}-\frac{1}{\sqrt{3}+1}=\frac{\sqrt{3}+1-\sqrt{3}+1}{2}=1\)

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\) 2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau: a) M-N b) \(M^3-N^3\) 3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\) và \(x\ne3\)) 4. Chứng minh:...
Đọc tiếp

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\)

2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau:

a) M-N

b) \(M^3-N^3\)

3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\)\(x\ne3\))

4. Chứng minh: \(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=a-b\) (a > 0 ; b > 0)

5. Chứng minh: \(\sqrt{9+4\sqrt{2}}=2\sqrt{2}+1\) ; \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=5+3\sqrt{2}\) ; \(3-2\sqrt{2}=\left(1-\sqrt{2}\right)^2\)

6. Chứng minh: \(\left(\frac{1}{2\sqrt{2}-\sqrt{7}}-\left(3\sqrt{2}+\sqrt{17}\right)\right)^2=\left(\frac{1}{2\sqrt{2}-\sqrt{17}}-\left(2\sqrt{2}-\sqrt{17}\right)\right)^2\)

7. Chứng minh đẳng thức: \(\left(\frac{3\sqrt{2}-\sqrt{6}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}=-\frac{4}{3}\)

8.Chứng minh: \(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)

9. Chứng minh rằng: \(\sqrt{2000}-2\sqrt{2001}+\sqrt{2002}< 0\)

10. \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\) ; \(\frac{7}{5}< \frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}< \frac{29}{30}\)

0