Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- \(A=\sqrt{11-2\sqrt{10}}=\sqrt{\left(\sqrt{10}-1\right)^2}=\sqrt{10}-1\)
- \(B=\left(\sqrt{28}-2\sqrt{4}+\sqrt{7}\right).\sqrt{7}+7\sqrt{7}=\left(2\sqrt{7}-2\sqrt{4}+\sqrt{7}\right).\sqrt{7}+7\sqrt{7}\)
\(=\left(3\sqrt{7}-4\right).\sqrt{7}+7\sqrt{7}=3\sqrt{7}+3\sqrt{7}=6\sqrt{7}\)
- \(C=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\frac{\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
- \(D=0,2.\sqrt{10^2.3}+2\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}=2\sqrt{3}+2\left(\sqrt{3}-\sqrt{5}\right)=4\sqrt{3}-2\sqrt{5}\)
\(A=4-\sqrt{21-8\sqrt{5}}=4-\sqrt{4^2-8\sqrt{5}+\left(\sqrt{5}\right)^2}.\)
\(A=4-\sqrt{\left(4-\sqrt{5}\right)^2}=4-\left(4-\sqrt{5}\right)\)
=> \(A=\sqrt{5}\)
\(x=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{1}{8}\sqrt{2}\)
\(\Leftrightarrow x+\frac{\sqrt{2}}{8}=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}\)
\(\Leftrightarrow\left(x+\frac{\sqrt{2}}{8}\right)^2=\frac{1}{4}\left(\sqrt{2}+\frac{1}{8}\right)\)
\(\Leftrightarrow x^2+\frac{x\sqrt{2}}{4}+\frac{1}{32}=\frac{\sqrt{2}}{4}+\frac{1}{32}\)
\(\Leftrightarrow x^2+\frac{x\sqrt{2}}{4}-\frac{\sqrt{2}}{4}=0\)
\(\Leftrightarrow4x^2+x\sqrt{2}-\sqrt{2}=0\)(1)
\(\Leftrightarrow x\sqrt{2}=\sqrt{2}-4x^2\)
\(\Leftrightarrow x=1-2x^2\sqrt{2}\)
Thay vào M ta sẽ được
\(M=x^2+\sqrt{x^4+1-2x^2\sqrt{2}+1}\)
\(=x^2+\sqrt{\left(x^2-\sqrt{2}\right)^2}\)
\(=x^2+\left|x^2-\sqrt{2}\right|\)
Từ \(\left(1\right)\Rightarrow\sqrt{2}-x\sqrt{2}=4x^2\ge0\)
\(\Leftrightarrow\sqrt{2}\left(1-x\right)\ge0\)
\(\Leftrightarrow x\le1\)
\(\Leftrightarrow x^2\le1< \sqrt{2}\)
\(\Rightarrow\left|x^2-\sqrt{2}\right|=\sqrt{2}-x^2\)
Khi đó \(M=x^2+\left|x^2-\sqrt{2}\right|=x^2-\sqrt{2}+x^2=\sqrt{2}\)
|N|
\(x+\sqrt{xy}=3\sqrt{xy}+15y\Leftrightarrow x-2\sqrt{xy}+y=16y\Leftrightarrow\sqrt{x}=\sqrt{y}+4\sqrt{y}=5\sqrt{y}\Leftrightarrow x=25y\)
\(E=\frac{50y+5y+3y}{25y+5y-y}=\frac{58}{29}=2\)
x=\(\frac{\sqrt[3]{\left(1+\sqrt{3}\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}}\)
x=\(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{\sqrt{5}+1-\sqrt{5}}\)
x=3-1=2
Thay vao P=\(\left(2^3-4.2-1\right)^{2010}=\left(8-8-1\right)^{2010}=\left(-1\right)^{2010}=-1\)
Vay P co gia tri nguyen la -1
Chuc ban hoc tot
\(T=\left(2\sqrt{3}+1\right)\left(3\sqrt{2}-1\right)\sqrt{13-4\sqrt{3}}.\sqrt{19+6\sqrt{6}}\)
\(T=\left(2\sqrt{3}+1\right)\left(3\sqrt{2}-1\right)\sqrt{\left(2\sqrt{3}-1\right)^2}.\sqrt{\left(3\sqrt{2}+1\right)^2}\)
\(T=\left(2\sqrt{3}+1\right)\left(3\sqrt{2}-1\right)\left|2\sqrt{3}-1\right|.\left|3\sqrt{2}+1\right|\)
\(T=\left(2\sqrt{3}+1\right)\left(3\sqrt{2}-1\right)\left(2\sqrt{3}-1\right)\left(3\sqrt{2}+1\right)\)
\(T=\left(2\sqrt{3}+1\right)\left(2\sqrt{3}-1\right)\left(3\sqrt{2}-1\right)\left(3\sqrt{2}+1\right)\)
\(T=11\cdot17\)
\(T=187\)
Quy trình : \(X=X-1:A=\sqrt[X]{A+X}\)
Nhập X = 16
A = 0 = = = ..... dừng khi X = 2
Đáp số \(A\approx1,911639216\)