Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, c.Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 9 - Học toán với OnlineMath
ĐK: \(x-9\ne0\Rightarrow x\ne9\)
\(\sqrt{x}\ge0\Rightarrow x\ge0\)
\(x+\sqrt{x}-6\ne0\Rightarrow x+3\sqrt{x}-2\sqrt{x}-6\ne0\Rightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\ne0\)
\(\Rightarrow\sqrt{x}-2\ne0\Rightarrow\sqrt{x}\ne2\Rightarrow x\ne4\)
ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)
\(A=\left(\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{1}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\left(\frac{1+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\frac{1+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4\sqrt{x}-12}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-3\right)}\)
2, Với \(x=\frac{25}{16}\)\(\Rightarrow\sqrt{x}=\sqrt{\frac{25}{16}}=\frac{5}{4}\)
\(A=\frac{\frac{5}{4}\left(\frac{5}{4}-2\right)}{4\left(\frac{5}{4}-3\right)}=\frac{5}{4}.\left(-\frac{3}{4}\right):4\left(-\frac{7}{4}\right)=-\frac{15}{16}:-7=\frac{15}{112}\)
\(\orbr{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\end{cases}}\)\(\orbr{\begin{cases}\orbr{\begin{cases}\sqrt{x}-2< 0\\\sqrt{x}-3>0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}< 2\\\sqrt{x}>3\end{cases}}\Rightarrow\orbr{\begin{cases}x< 4\\x>9\end{cases}}}\\\orbr{\begin{cases}\sqrt{x}-2>0\\\sqrt{x}-3< 0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}>2\\\sqrt{x}< 3\end{cases}\Rightarrow\orbr{\begin{cases}x>4\\x< 9\end{cases}}}}\end{cases}}\)
Ta có: \(a=\sqrt{\frac{3}{5}}+\sqrt{\frac{5}{3}}=\frac{\sqrt{3}}{\sqrt{5}}+\frac{\sqrt{5}}{\sqrt{3}}=\frac{8\sqrt{15}}{15}\)
=> \(a^2=\frac{64}{15}\)
=> \(M=\sqrt{15a^2-8a\sqrt{15}+16}=\sqrt{15.\frac{64}{15}-8.\frac{8\sqrt{15}}{15}.\sqrt{15}+16}\)
\(M=\sqrt{64-64+16}=4\)
ai nay dung kinh nghiem la chinh
cau a)
ta thay \(10+6\sqrt{3}=\left(1+\sqrt{3}\right)^3\)
\(6+2\sqrt{5}=\left(1+\sqrt{5}\right)^2\)
khi do \(x=\frac{\sqrt[3]{\left(\sqrt{3}+1\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{5}}\)
\(x=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{1+\sqrt{5}-\sqrt{5}}\)
\(x=\frac{3-1}{1}=2\)
suy ra
x^3-4x+1=1
A=1^2018
A=1
b)
ta thay
\(7+5\sqrt{2}=\left(1+\sqrt{2}\right)^3\)
khi do
\(x=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\frac{1}{\sqrt[3]{\left(1+\sqrt{2}\right)^3}}\)
\(x=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}=\frac{\left(1+\sqrt{2}\right)^2-1}{1+\sqrt{2}}=\frac{2+2\sqrt{2}}{1+\sqrt{2}}\)
x=2
thay vao
x^3+3x-14=0
B=0^2018
B=0
Ta có:
\(x=1+\sqrt[3]{5}+\sqrt[3]{25}\)
\(\Rightarrow x^3=\left(1+\sqrt[3]{5}+\sqrt[3]{25}\right)^3=61+33\sqrt[3]{5}+21\sqrt[3]{25}\)
\(=\left(33+21\sqrt[3]{5}+9\sqrt[3]{25}\right)+\left(12+12\sqrt[3]{5}+12\sqrt[3]{25}\right)+16=3x^2+12x+16\)
\(\Rightarrow P=\left(x^3-3x^2-12x-15\right)^{10}+2018\)
\(=\left(3x^2+12x+16-3x^2-12x-15\right)^{10}+2018=2019\)
\(=\frac{3\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)-\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{3\sqrt{x}-3-\sqrt{x}-1-\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{1}{\sqrt{x}-1}\)
x=\(24-16\sqrt{2}=4^2-2.4.\sqrt{8}+\left(2\sqrt{2}\right)^2=\left(4-2\sqrt{2}\right)^2\)
a) \(P=\frac{3}{\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}-5}{x-1}\)
\(P=\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-5}{x-1}\)
\(P=\frac{3\sqrt{x}-3-\sqrt{x}-1}{x-1}-\frac{\sqrt{x}-5}{x-1}\)
\(P=\frac{3\sqrt{x}-3-\sqrt{x}-1-\sqrt{x}+5}{x-1}\)
\(P=\frac{\sqrt{x}+1}{x-1}\)
vay \(P=\frac{\sqrt{x}+1}{x-1}\)
b) thay vao P ta duoc:
\(P=\frac{\sqrt{24-16\sqrt{2}}+1}{24-16\sqrt{2}-1}\)
\(P=\frac{\sqrt{\left(2\sqrt{2}\right)^2-2.2.4\sqrt{2}+4^2}+1}{\left(2\sqrt{2}\right)^2-2.2.4\sqrt{2}+4^2-1}\)
\(P=\frac{\sqrt{\left(2\sqrt{2}-4\right)^2}+1}{\left(2\sqrt{2}-4\right)^2-1^2}\)
\(P=\frac{2\sqrt{2}-4+1}{\left(2\sqrt{2}-4-1\right)\left(2\sqrt{2}-4+1\right)}\)
\(P=\frac{2\sqrt{2}-3}{\left(2\sqrt{2}-5\right)\left(2\sqrt{2}-3\right)}\)
\(P=\frac{1}{2\sqrt{2}-5}\)
vay \(P=\frac{1}{2\sqrt{2}-5}\)
anh có công thức này cho m
\(1^3+2^3+...+\left(n-1\right)^3+n^3=\left(1+2+...+n-1+n\right)^2=\left(\frac{n\left(n+1\right)}{2}\right)^2\) . m có thể chứng minh cái này bằng quy nạp
\(A=\sqrt{14^3+15^3+16^3+...+24^3+25^3}\)
\(=\sqrt{\left(1^3+2^3+....+13^3\right)+14^3+15^3+16^3+...+24^3+25^3-\left(1^3+2^3+....+13^3\right)}\)
\(=\sqrt{\left(25\cdot\frac{26}{2}\right)^2-\left(13\cdot\frac{14}{2}\right)^2}=312\)