Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
6a = 4b = 3c
=> \(\dfrac{6a}{12}=\dfrac{4b}{12}=\dfrac{3c}{12}\)
=> \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)
=> \(\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}\)
Đặt \(\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}\)= k
=>\(\left\{{}\begin{matrix}a^2=4k\\b^2=9k\\c^2=16k\end{matrix}\right.\)
Thay \(\left\{{}\begin{matrix}a^2=4k\\b^2=9k\\c^2=16k\end{matrix}\right.\)vào biểu thức N ta được:
N = \(\dfrac{3a^2+6b^2-5c^2}{2a^2-4b^2+3c^2}\)
N = \(\dfrac{3.4k+6.9k-5.16k}{2.4k-4.9k+3.16k}\)
N = \(\dfrac{12k+54k-80k}{8k-36k+48k}\)
N = \(\dfrac{-14k}{20k}\)
N = \(\dfrac{-7}{10}\)
\(N=\dfrac{3a^2+6b^2-5c^2}{2a^2-4b^2+3c^2}\) (1)
Ta có:
\(6a=4b=3c\Rightarrow\dfrac{6a}{12}=\dfrac{4b}{12}=\dfrac{3c}{12}\Rightarrow\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)
Đặt \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=k\Rightarrow\left\{{}\begin{matrix}a=2k\\b=3k\\c=4k\end{matrix}\right.\) (2)
Thay (2) vào (1) ta có:
\(\dfrac{3.\left(2k\right)^2+6.\left(3k\right)^2-5.\left(4k\right)^2}{2.\left(2k\right)^2-4.\left(3k\right)^2+3.\left(4k\right)^2}=\dfrac{3.4.k^2+6.9.k^2-5.16.k^2}{2.4.k^2-4.9.k^2+3.16.k^2}\)
\(=\dfrac{12k^2+54k^2-80k^2}{8k^2-36k^2+48k^2}=\dfrac{k^2.\left(12+54-80\right)}{k^2.\left(8-36+48\right)}=\dfrac{-14}{20}=\dfrac{-7}{10}\)
Vậy giá trị của biểu thức N là \(\dfrac{-7}{10}\)
Chúc bạn học tốt!!!
ta cs a/b=c/d=>a/c=b/d
=>2a+3b/2c+3d=3a-4b/3c-4d
=>2a+3b/3a-4b=2c+3d/3c-4d
=>bai toan dc c/m
Cau b tuong tu nha ban
don't forget tick me
a) Ta có \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a+3b}{2c+3d}\) (1).
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{2a+3b}{2c+3d}=\frac{3a-4b}{3c-4d}.\)
\(\Rightarrow\frac{2a+3b}{3a-4b}=\frac{2c+3d}{3c-4d}\left(đpcm\right).\)
Chúc bạn học tốt!
6a = 4b = 3c => \(\frac{6a}{12}=\frac{4b}{12}=\frac{3c}{12}\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=t\)
=> a = 2t ; b = 3t ; c = 4t thay vào N ta có \(\frac{3.\left(2t\right)^2+6.\left(3t\right)^2-5\left(4t\right)^2}{2.\left(2t\right)^2-4.\left(3t\right)^2+3\left(4t\right)^2}=\frac{3.4.t^2+6.9.t^2-5.16.t^2}{2.4.t^2-4.9.t^2+3.16.t^2}=\frac{-14t^2}{20t^2}=-\frac{7}{10}\)