Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có:
\(\left\{{}\begin{matrix}sin^2\alpha+cos^2\alpha=1\\sin\alpha=\dfrac{8}{17}\\0< \alpha< \dfrac{\pi}{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}cos^2\alpha=1-\left(\dfrac{8}{17}\right)^2\\sin\alpha=\dfrac{8}{17}\\cos\alpha,sin\alpha>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}cos\alpha=\dfrac{15}{17}\\sin\alpha=\dfrac{8}{17}\end{matrix}\right.\).
Tương tự: \(\left\{{}\begin{matrix}sin\beta=\dfrac{15}{17}\\cos\beta=\dfrac{8}{17}\end{matrix}\right.\).
Có:\(sin\left(\alpha+\beta\right)=sin\alpha cos\beta+cos\alpha sin\beta\)\(=\left(\dfrac{8}{17}\right)^2+\left(\dfrac{15}{17}\right)^2=1\) và \(0< \alpha< \dfrac{\pi}{2};0< \beta< \dfrac{\pi}{2}\) nên: \(\alpha+\beta=\dfrac{\pi}{2}\).
Cách lập luận khác: \(sin\alpha=cos\beta\) và \(0< \alpha< \dfrac{\pi}{2};0< \beta< \dfrac{\pi}{2}\) nên: \(\alpha+\beta=\dfrac{\pi}{2}\).
\(A=cos^2a+cos^2b+2cosa.cosb+sin^2a+sin^2b+2sina.sinb\)
\(=2+2\left(cosa.cosb+sina.sinb\right)\)
\(=2+2.cos\left(a-b\right)=2+2.cos\frac{\pi}{3}=3\)
\(B=cos^2a+sin^2b+2cosa.sinb+cos^2b+sin^2a-2sina.cosb\)
\(=2-2\left(sina.cosb-cosa.sinb\right)\)
\(=2-2sin\left(a-b\right)=2-2sin\frac{\pi}{3}=2-\sqrt{3}\)
Có \(a\) thuộc góc phần tư thứ III -> sin\(a\) < 0
+) sin\(a\)=-\(\sqrt{1-cos^2a}\)=-\(\sqrt{1-\left(\dfrac{-12}{13}\right)^2}\)=\(\dfrac{-5}{13}\)
\(cos2a=cos^2a-sin^2a\)=\(\left(\dfrac{-12}{13}\right)^2-\left(\dfrac{-5}{13}\right)^2=\dfrac{119}{169}\)
1.
\(2cos\left(a+b\right)=cosa.cos\left(\pi+b\right)\)
\(\Leftrightarrow2cosa.cosb-2sina.sinb=-cosa.cosb\)
\(\Leftrightarrow2sina.sinb=3cosa.cosb\Rightarrow4sin^2a.sin^2b=9cos^2a.cos^2b\)
\(\Rightarrow4\left(1-cos^2a\right)\left(1-cos^2b\right)=9cos^2a.cos^2b\)
\(\Leftrightarrow4-4\left(cos^2a+cos^2b\right)=5cos^2a.cos^2b\)
\(A=\dfrac{1}{cos^2a+2\left(sin^2a+cos^2a\right)}+\dfrac{1}{cos^2b+2\left(sin^2b+cos^2b\right)}\)
\(=\dfrac{1}{2+cos^2a}+\dfrac{1}{2+cos^2b}=\dfrac{4+cos^2a+cos^2b}{4+2\left(cos^2a+cos^2b\right)+cos^2a.cos^2b}\)
\(=\dfrac{4+cos^2a+cos^2b}{4+2\left(cos^2a+cos^2b\right)+\dfrac{4}{5}-\dfrac{4}{5}\left(cos^2a+cos^2b\right)}=\dfrac{4+cos^2a+cos^2b}{\dfrac{24}{5}+\dfrac{6}{5}\left(cos^2a+cos^2b\right)}=\dfrac{5}{6}\)
2.
\(A=2cos\dfrac{2x}{3}\left(cos\dfrac{2\pi}{3}+cos\dfrac{4x}{3}\right)=2cos\dfrac{2x}{3}\left(cos\dfrac{4x}{3}-\dfrac{1}{2}\right)\)
\(=2cos\dfrac{2x}{3}.cos\dfrac{4x}{3}-cos\dfrac{2x}{3}\)
\(=cos3x+cos\dfrac{2x}{3}-cos\dfrac{2x}{3}\)
\(=cos3x\)
\(B=\dfrac{cos2b-cos2a}{cos^2a.sin^2b}-tan^2a.cot^2b=\dfrac{1-2sin^2b-\left(1-2sin^2a\right)}{cos^2a.sin^2b}-tan^2a.cot^2b\)
\(=\dfrac{2sin^2a-2sin^2b}{cos^2a.sin^2b}-tan^2a.cot^2b=2tan^2a\left(1+cot^2b\right)-2\left(1+tan^2a\right)-tan^2a.cot^2b\)
\(=2tan^2a+2tan^2a.cot^2b-2-2tan^2a-tan^2a.cot^2b\)
\(=tan^2a.cot^2b-2\)
a) \(\dfrac{tan\alpha-tan\beta}{cot\beta-cot\alpha}=\dfrac{\dfrac{sin\alpha}{cos\alpha}-\dfrac{sin\beta}{cos\beta}}{\dfrac{cos\beta}{sin\beta}-\dfrac{cos\alpha}{sin\alpha}}\)
\(=\dfrac{\dfrac{sin\alpha cos\beta-cos\alpha sin\beta}{cos\alpha cos\beta}}{\dfrac{cos\beta sin\alpha-cos\alpha sin\beta}{sin\beta sin\alpha}}\)
\(=\dfrac{sin\beta sin\alpha}{cos\beta cos\alpha}=tan\alpha tan\beta\).
b) \(tan100^o+\dfrac{sin530^o}{1+sin640^o}=tan100^o+\dfrac{sin170^o}{1+sin280^o}\)
\(=-cot10^o+\dfrac{sin10^o}{1-sin80^o}\)\(=\dfrac{-cos10^o}{sin10^o}+\dfrac{sin10^o}{1-cos10^o}\)
\(=\dfrac{-cos10^o+cos^210^o+sin^210^o}{sin10^o\left(1-cos10^o\right)}\) \(=\dfrac{1-cos10^o}{sin10^o\left(1-cos10^o\right)}=\dfrac{1}{sin10^o}\) .
Ta có \(F=sin^2\dfrac{\pi}{6}+...+sin^2\pi=\left(sin^2\dfrac{\pi}{6}+sin^2\dfrac{5\pi}{6}\right)+\left(sin^2\dfrac{2\pi}{6}+sin^2\dfrac{4\pi}{6}\right)+\left(sin^2\dfrac{3\pi}{6}+sin^2\pi\right)=\left(sin^2\dfrac{\pi}{6}+cos^2\dfrac{\pi}{6}\right)+\left(sin^2\dfrac{2\pi}{6}+cos^2\dfrac{2\pi}{6}\right)+\left(1+0\right)=1+1+1=3\)