Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D 2cm E 4cm 45
Kẻ \(BE\perp CD\)
Xét \(\Delta BEC\)vuông tại E có :
\(\widehat{BEC}=90^o\) ( theo cách vẽ )
Mà \(\widehat{C}=45^o\)(gt)
\(\Rightarrow\Delta BEC\)vuông cân tại E
\(\Rightarrow BE=EC\)( tính chất tam giác vuông cân )
Hay \(BE\perp DC\)(1)
Vì \(\widehat{D}=90^o\left(gt\right)\)
\(\Rightarrow AD\perp DC\left(2\right)\)
Từ (1) và (2) \(\Rightarrow AD//BE\)( từ vuông góc đến song song )
Hình thang \(ABED\) có \(AD//BE\left(cmt\right)\)
\(\Rightarrow AB=DE\)( theo nhận xét của hình thang )
Mà \(AB=2cm\left(gt\right)\)
\(\Rightarrow AB=DE=2cm\)
Ta có \(EC=CD-BE\)
\(\Rightarrow EC=4-2\)
\(\Rightarrow EC=2cm\)
Mà BE = EC (cmt)
\(\Rightarrow BE=2cm\)
\(\Rightarrow S_{ABCD}=\frac{1}{2}\left(AB+CD\right).BE=\frac{1}{2}.\left(2+4\right).2=\frac{1}{2}.6.2=6\left(cm^2\right)\)
Vậy \(S_{ABCD}=6\left(cm^2\right)\)
Chúc bạn học tốt !!!
Kẻ \(BH\perp CD\)
Mà \(CD\perp AD\left(gt\right)\Rightarrow BH//AD\)
Hình thang ABHD (AB//HD) có BH//AD nên \(\hept{\begin{cases}HD=AB=5\left(cm\right)\\BH=AD\end{cases}}\) (t/c hình thang)
\(HD+HC=DC\Rightarrow5+HC=9\Rightarrow HC=4\left(cm\right)\)
\(\Delta HBC\)vuông cân tại H nên \(HB=HC=4cm\Rightarrow AD=4cm\left(AD=BH\right)\)
Áp dụng định lí Pitago tính được \(BC=\sqrt{32}\left(cm\right)\)
Chu vi hình thang vuông ABCD là:
\(AB+BC+CD+AD=5+\sqrt{32}+9+4=18+\sqrt{32}\left(cm\right)\)
Chúc bạn học tốt.
A B C D H
Vì AB // CD nên \(\widehat{B}+\widehat{C}=180^o\)
Mà \(\widehat{B}=\widehat{C}\)
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{180^o}{2}=90^o\)
\(\Rightarrow\)Tứ giác ABCH có 3 góc vuông là hình chữ nhật
Ta có : \(DH=DC-HC\)
\(=DC-AB\) (Vì AB = HC)
\(=4-3\)
\(=1\left(cm\right)\)
Lại có : \(\hept{\begin{cases}\widehat{A}=3\widehat{D}\\\widehat{A}+\widehat{D}=180^o\left(slt\right)\end{cases}\Rightarrow}\hept{\begin{cases}\widehat{A}=135^o\\\widehat{D}=45^o\end{cases}}\)
\(\Rightarrow\)△AHD vuông tại H có ^ADH = 45o
\(\Rightarrow\)△AHD vuông cân tại H
\(\Rightarrow\)AH = DH
\(\Rightarrow\)AH = 1 (cm)
Vậy \(S_{ABCD}=\frac{\left(AB+CD\right)\cdot AH}{2}=\frac{\left(4+3\right)\cdot1}{2}=3,5\left(cm^2\right)\)
Xét hình thang ABCD có \(AB//CD\)(gt) có:
\(\widehat{A}+\widehat{D}=180^0\)(trong cùng phía)
Mà \(\widehat{A}=3\widehat{D}\left(gt\right)\)
\(\Rightarrow3\widehat{D}+\widehat{D}=180^0\)
\(\Leftrightarrow4\widehat{D}=180^0\)
\(\Leftrightarrow\widehat{D}=45^0\)
\(\Rightarrow\widehat{A}=3.45^0=135^0\)
Ta có:\(AB//CD\left(gt\right)\)\(\Rightarrow\widehat{B}+\widehat{C}=180^0\)
Mà \(\widehat{B}=\widehat{C}\left(gt\right)\)\(\Rightarrow\widehat{B}+\widehat{B}=180^0\)
\(\Leftrightarrow2\widehat{B}=180^0\)
\(\Leftrightarrow\widehat{B}=90^0\Rightarrow\widehat{C}=90^0\)
Xét tứ giác ABCH có \(\widehat{B}=\widehat{C}=\widehat{H}=90^0\left(cmt\right)\)
\(\Rightarrow\)Tứ giác ABCH là hình chữ nhật (DHNB)
\(\Rightarrow AB=CH=3cm\)(t/c) \(\Rightarrow DH=CD-CH=4-3=1\left(cm\right)\)
Xét \(\Delta AHD\)có \(\widehat{H}=90^0,\widehat{D}=45^0\left(cmt\right)\)
\(\Rightarrow\Delta AHD\)vuông cân tại A (DHNB) \(\Rightarrow AH=DH=1cm\)(t/c)
Diện tích hình thang ABCD có:
\(S_{ABCD}=\frac{\left(AB+CD\right)\times AH}{2}=\frac{\left(3+4\right)\times1}{2}=3,5\left(cm^2\right)\)
Đáp số \(3,5cm^2\)
Học tốt
Kẻ BH⊥CD thì BH//AD, BH⊥AB
BH//AD và AB//HD nên ABHD là hbh
\(\Rightarrow AB=DH=2\left(cm\right);AD=BH\\ \Rightarrow CH=CD-DH=3\left(cm\right)\)
Pytago: \(AD^2=BH^2=BC^2-DH^2=16\left(cm\right)\)
\(\Rightarrow AD=4\left(cm\right)\\ \Rightarrow S_{ABCD}=\dfrac{1}{2}AD\left(AB+CD\right)=\dfrac{1}{2}\cdot4\cdot7=14\left(cm^2\right)\)
ủa DH hay CH vậy a ?