\(y=\frac{4^x-1}{6^x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2016

\(y=\left(\frac{2}{3}\right)^x-\left(\frac{1}{6}\right)^x\Rightarrow y'=\frac{1}{x\ln\frac{2}{3}}+\frac{1}{x\ln6}\)

                                     \(=\frac{2\ln2}{x\ln6\left(\ln2-\ln3\right)}\)

26 tháng 3 2016

a) Hàm số \(y=\left(x^3-8\right)^{\frac{\pi}{3}}\) xác định khi và chỉ khi \(x^8-8>0\)

                  \(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)>0\Leftrightarrow x-2>0\Leftrightarrow x>2\)

Vậy tập xác định của hàm số là \(\left(2;+\infty\right)\)

Đạo hàm của hàm số là :

\(y'=\frac{\pi}{3}\left(x^3-8\right)'.\left(x^3-8\right)^{\frac{\pi}{3}-1}=\frac{\pi}{3}.3x^2\left(x^3-8\right)^{\frac{\pi}{3}-1}=x^2\left(x^3-8\right)^{\frac{\pi}{3}-1}\)

b) Hàm số xác định khi và chỉ khi \(x^2+x-6>0\Leftrightarrow x<-3\) hoặc \(x\ge2\)

Vậy tập xác định của hàm số là : \(\left(-\infty;-3\right)\cup\left(2;+\infty\right)\)

Đạo hàm của hàm số là :

\(y'=\frac{-1}{3}\left(x^2+x-6\right)'.\left(x^2+x-6\right)^{\frac{-1}{3}-1}=\frac{-\left(2x+1\right)\left(x^2+x-6\right)^{\frac{-4}{3}}}{3}\)

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

27 tháng 4 2017

Hỏi đáp Toán

4 tháng 5 2016

Ta có \(y'=e^{\sqrt[3]{x^2+1}-x}\left(\sqrt[3]{x^2+1}-x\right)+3^{3x-1}\left(3x-1\right)'\ln3\)

             \(=e^{\sqrt[3]{x^2+1}-x}\left(\frac{2x}{3\sqrt[3]{\left(x^2+1\right)^2}}-1\right)+3^{3x}\ln3\)

4 tháng 5 2016

Ta có \(y=\log_3\left(\frac{x^2-2x+3}{x^2+2x+3}\right)=\log_3\left(x^2-2x+3\right)-\log_3\left(x^2+2x+3\right)\)

         \(\Rightarrow y'=\frac{2x-2}{\left(x^2-2x+3\right)\ln3}-\frac{2x-2}{\left(x^2+2x+3\right)\ln3}=\frac{4x^2-12}{\left(x^4+2x^2+9\right)\ln3}\)

6 tháng 5 2016

Ta có \(y'=\frac{1}{3x\sqrt[3]{\ln}x}\)

\(y=\sqrt{x\sqrt[3]{x\sqrt[4]{x}}}=x^{\frac{1}{2}}.x^{\frac{1}{2}.\frac{1}{3}}.x^{\frac{1}{2}.\frac{1}{3}.\frac{1}{4}}=x^{\frac{17}{24}}\)

\(\Rightarrow y'=\frac{17}{24}.x^{\frac{17}{24}-1}=\frac{17}{24}.x^{\frac{-7}{24}}=\frac{17}{24\sqrt[24]{x^7}}\)

14 tháng 5 2016

a. \(y=\left(x^2-4\right)^{\frac{\pi}{2}}\)

Điều kiện \(x^2-4>0\Leftrightarrow\left[\begin{array}{nghiempt}x< -2\\x>2\end{array}\right.\)

Suy ra tập xác đinh \(D=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\)

 

b.\(y=\left(6-x-x^2\right)^{\frac{1}{3}}\)

Điều kiện \(6-x-x^2>0\Leftrightarrow x^2+x-6< 0\)

                                      \(\Leftrightarrow-3< x< x\)

Vậy tập xác định là \(D=\left(-3;2\right)\)

17 tháng 12 2017

Cách giải