Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{4}{2.5}+\frac{4}{5.8}+\frac{4}{8.11}+...+\frac{4}{65.68}\)
\(A=\frac{4}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{65.68}\right)\)
\(A=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{65}-\frac{1}{68}\right)\)
\(A=\frac{4}{3}.\left[\frac{1}{2}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{8}-\frac{1}{8}\right)+...+\left(\frac{1}{65}-\frac{1}{65}\right)-\frac{1}{68}\right]\)
\(A=\frac{4}{3}.\left[\frac{1}{2}-\frac{1}{68}\right]\)
\(A=\frac{4}{3}.\frac{33}{68}\)
\(A=\frac{11}{17}\)
~ Hok tốt ~
\(A=\frac{4}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+....+\frac{1}{65}-\frac{1}{68}\right)\)
\(=\frac{4}{3}\left(\frac{1}{2}-\frac{1}{68}\right)\)
\(=\frac{4}{3}\times\frac{33}{68}=\frac{11}{17}\)
\(A=8\frac{4}{17}-\left(2\frac{5}{9}+3\frac{4}{17}\right)\)
\(A=8\frac{4}{17}-2\frac{5}{9}-3\frac{4}{17}\)
\(A=\left(8\frac{4}{17}-3\frac{4}{17}\right)-\frac{23}{9}\)
\(A=5-\frac{23}{9}\)
\(A=\frac{45}{9}-\frac{23}{9}\)
\(A=\frac{22}{9}\)
\(A=8\frac{4}{7}-2\frac{5}{9}-3\frac{4}{7}\)
\(A=\left(8\frac{4}{7}-3\frac{4}{7}\right)-2\frac{5}{9}\)
\(A=5-2\frac{5}{9}\)
\(A=4+1-2\frac{5}{9}\)
\(A=4+1-\frac{23}{9}\)
\(A=4+\frac{-14}{9}\)
\(A=1\frac{5}{9}\)
Ta có A = 4^0 + 4^1 +...+ 4^2013
Xét B = 4^1 +4^2 +4^3+....+4^2013 ( 2013 số hạng)
=> B = (4^1 + 4^2 + 4^3) +(4^4+4^5+4^6) +...+ (4^2011+4^2012+4^2013)
=> B = 4^1(1+4^1+4^2) + 4^4(1+4+4^2) +...+ 4^2011(1+4+4^2)
=> B = 4^1 .21 + 4^4 . 21 +...+ 4^2011.21
=> B = 21.(4^1 + 4^4 +...+4^2011)
=> A = 4^0 + 21(4^1+4^4+..+4^2011)
=> A chia 21 dư 4^0 = 1
Vậy A chia 21 dư 1
a, \(\left(x-\frac{2}{3}\right)^2=\frac{5}{6}\Leftrightarrow\orbr{\begin{cases}x-\frac{2}{3}=\sqrt{\frac{5}{6}}\\x-\frac{2}{3}=-\sqrt{\frac{5}{6}}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{4+\sqrt{30}}{6}\\x=\frac{4-\sqrt{30}}{6}\end{cases}}}\)nghiệm xấu thế ?
b, \(\left(\frac{3}{4}-x\right)^3=\left(-8\right)\Leftrightarrow\frac{3}{4}-x=-2\Leftrightarrow x=\frac{11}{4}\)
a, \(2A=2+2^2+2^3+...+2^{2011}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)
\(A=2^{2011}-1\)
b, \(4C=4^2+4^3+...+4^{n+1}\)
\(4C-C=\left(4^2+4^3+...+4^{n+1}\right)-\left(4+4^2+...+4^n\right)\)
\(3C=4^{n+1}-4\)
\(C=\frac{4^{n+1}-4}{3}\)
a) A = 1 + 2 + 22 + ... + 22010
=> 2A = 2 + 22 + 23 + ... + 22011
Lấy 2A - A = (2 + 22 + 23 + ... + 22011) - (1 + 2 + 22 + ... + 22010)
A = 2 + 22 + 23 + ... + 22011 - 1 - 2 - 22 - ... - 22010
= 22011 - 1
b) C = 4 + 42 + 43 +... + 4n
=> 4C = 42 + 43 + 44 + ... + 4n + 1
Lấy 4C - C = (42 + 43 + 44 + ... + 4n + 1) - ( 4 + 42 + 43 +... + 4n)
3C = 4n + 1 - 4
C =(4n + 1 - 4) : 3
\(\Rightarrow4C=4^2+4^3+...+4^{n+1}\)
\(\Rightarrow4C-C=\left(4^2+4^3+...+4^{n+1}\right)-\left(4+4^2+...+4^n\right)\)
\(\Rightarrow3C=4^{n+1}-4\)
\(\Rightarrow C=\frac{4^{n+1}-4}{3}\)
\(4C=4^2+4^3+4^4+...+4^{n+1}\)
\(4C-C=4^2+4^3+...+4^{n+1}-4-4^2-...-4^n\)
\(3C=4^{n+1}-4\)
\(C=\frac{4^{n+1}-4}{3}\)